Skip to main content
Log in

A novel smoothed particle hydrodynamics method for multi-physics simulation of laser powder bed fusion

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this work, we propose an efficient smoothed particle hydrodynamics (SPH) method for simulating laser powder bed fusion (LPBF). The multi-physics process of LPBF, including the heat transfer and phase change with complex boundaries, is accurately resolved by a novel heat source model and a modified continuous surface force based on a corrected surface delta function. Moreover, we also develop an efficient tensile instability control algorithm for preventing the pressure oscillations. The present method is implemented in a GPU-accelerated framework, and its performance is well demonstrated by simulating the LPBF processes with both single-layer and multi-layer powder beds (with the help of surface reconstruction). The numerical results are compared well with the experimental ones which clearly verify the ability of the present method in capturing the complex physical phenomenon of LPBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. Blakey-Milner B, Gradl P, Snedden G, Brooks M, Pitot J, Lopez E, Leary M, Berto F, Du Plessis A (2021) Metal additive manufacturing in aerospace: a review. Mater Des 209:110008. https://doi.org/10.1016/j.matdes.2021.110008

    Article  Google Scholar 

  2. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  Google Scholar 

  3. Hoye N, Li HJ, Cuiuri D, Paradowska AM (2014) Measurement of residual stresses in titanium aerospace components formed via additive manufacturing. Mater Sci Forum 777:124–129. https://doi.org/10.4028/www.scientific.net/MSF.777.124

    Article  Google Scholar 

  4. Zhao X, Wei QS, Gao N, Zheng EL, Shi YS, Yang SF (2019) Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing. J Mater Process Technol 270:8–19. https://doi.org/10.1016/j.jmatprotec.2019.01.028

    Article  Google Scholar 

  5. Antonysamy AA (2012) Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications, The University of Manchester (United Kingdom)

  6. Wang M, Song B, Wei Q, Zhang Y, Shi Y (2019) Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy. Mater Sci Eng A 739:463–472. https://doi.org/10.1016/j.msea.2018.10.047

    Article  Google Scholar 

  7. Culmone C, Smit G, Breedveld P (2019) Additive manufacturing of medical instruments: a state-of-the-art review. Addit Manuf 27:461–473. https://doi.org/10.1016/j.addma.2019.03.015

    Article  Google Scholar 

  8. Gowers SAN, Curto VF, Seneci CA, Wang C, Anastasova S, Vadgama P, Yang G-Z, Boutelle MG (2015) 3D printed microfluidic device with integrated biosensors for online analysis of subcutaneous human microdialysate. Anal Chem 87:7763–7770. https://doi.org/10.1021/acs.analchem.5b01353

    Article  Google Scholar 

  9. Murr LE, Gaytan SM, Medina F, Lopez H, Martinez E, Machado BI, Hernandez DH, Martinez L, Lopez MI, Wicker RB, Bracke J (2010) Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans R Soc Math Phys Eng Sci 368:1999–2032. https://doi.org/10.1098/rsta.2010.0010

    Article  Google Scholar 

  10. Yan Q, Dong H, Su J, Han J, Song B, Wei Q, Shi Y (2018) A review of 3D printing technology for medical applications. Engineering 4:729–742. https://doi.org/10.1016/j.eng.2018.07.021

    Article  Google Scholar 

  11. Laumer T, Wudy K, Drexler M, Amend P, Roth S, Drummer D, Schmidt M (2014) Fundamental investigation of laser beam melting of polymers for additive manufacture. J Laser Appl 26:042003. https://doi.org/10.2351/1.4892848

    Article  Google Scholar 

  12. Leal R, Barreiros FM, Alves L, Romeiro F, Vasco JC, Santos M, Marto C (2017) Additive manufacturing tooling for the automotive industry. Int J Adv Manuf Technol 92:1671–1676. https://doi.org/10.1007/s00170-017-0239-8

    Article  Google Scholar 

  13. Strano G, Hao L, Everson RM, Evans KE (2013) Surface roughness analysis, modelling and prediction in selective laser melting. J Mater Process Technol 213:589–597. https://doi.org/10.1016/j.jmatprotec.2012.11.011

    Article  Google Scholar 

  14. Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf 1–4:77–86. https://doi.org/10.1016/j.addma.2014.08.001

    Article  Google Scholar 

  15. Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45

    Article  Google Scholar 

  16. Khalil M, Teichert GH, Alleman C, Heckman NM, Jones RE, Garikipati K, Boyce BL (2021) Modeling strength and failure variability due to porosity in additively manufactured metals. Comput Methods Appl Mech Eng 373:113471. https://doi.org/10.1016/j.cma.2020.113471

    Article  MathSciNet  Google Scholar 

  17. Qiu C, Panwisawas C, Ward M, Basoalto HC, Brooks JW, Attallah MM (2015) On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater 96:72–79. https://doi.org/10.1016/j.actamat.2015.06.004

    Article  Google Scholar 

  18. Korshunova N, Papaioannou I, Kollmannsberger S, Straub D, Rank E (2021) Uncertainty quantification of microstructure variability and mechanical behavior of additively manufactured lattice structures. Comput Methods Appl Mech Eng 385:114049. https://doi.org/10.1016/j.cma.2021.114049

    Article  MathSciNet  Google Scholar 

  19. Lüthi C, Afrasiabi M, Bambach M (2023) An adaptive smoothed particle hydrodynamics (SPH) scheme for efficient melt pool simulations in additive manufacturing. Comput Math Appl 139:7–27. https://doi.org/10.1016/j.camwa.2023.03.003

    Article  MathSciNet  Google Scholar 

  20. Chen H, Yan W (2020) Spattering and denudation in laser powder bed fusion process: multiphase flow modelling. Acta Mater 196:154–167. https://doi.org/10.1016/j.actamat.2020.06.033

    Article  Google Scholar 

  21. Khairallah SA, Martin AA, Lee JRI, Guss G, Calta NP, Hammons JA, Nielsen MH, Chaput K, Schwalbach E, Shah MN, Chapman MG, Willey TM, Rubenchik AM, Anderson AT, Wang YM, Matthews MJ, King WE (2020) Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3D printing. Science 368:660–665. https://doi.org/10.1126/science.aay7830

    Article  Google Scholar 

  22. Sun T (2020) Probing ultrafast dynamics in laser powder bed fusion using high-speed X-Ray imaging: a review of research at the advanced photon source. JOM 72:999–1008. https://doi.org/10.1007/s11837-020-04015-9

    Article  Google Scholar 

  23. Mindt HW, Desmaison O, Megahed M (2015) Modelling powder bed additive manufacturing defects. In: 7th european conference for aeronautics space sciences Eucass, pp 1–6

  24. Ganeriwala R, Zohdi TI (2016) A coupled discrete element-finite difference model of selective laser sintering. Granul Matter 18:21. https://doi.org/10.1007/s10035-016-0626-0

    Article  Google Scholar 

  25. Khairallah SA, Anderson A (2014) Mesoscopic simulation model of selective laser melting of stainless steel powder. J Mater Process Technol 214:2627–2636. https://doi.org/10.1016/j.jmatprotec.2014.06.001

    Article  Google Scholar 

  26. Li M-J, Chen J, Lian Y, Xiong F, Fang D (2023) An efficient and high-fidelity local multi-mesh finite volume method for heat transfer and fluid flow problems in metal additive manufacturing. Comput Methods Appl Mech Eng 404:115828. https://doi.org/10.1016/j.cma.2022.115828

    Article  MathSciNet  Google Scholar 

  27. Yuan W, Chen H, Cheng T, Wei Q (2020) Effects of laser scanning speeds on different states of the molten pool during selective laser melting: simulation and experiment. Mater Des 189:108542. https://doi.org/10.1016/j.matdes.2020.108542

    Article  Google Scholar 

  28. Yu T, Zhao J (2021) Semi-coupled resolved CFD–DEM simulation of powder-based selective laser melting for additive manufacturing. Comput Methods Appl Mech Eng 377:113707. https://doi.org/10.1016/j.cma.2021.113707

    Article  MathSciNet  Google Scholar 

  29. Yu T, Zhao J (2022) Quantitative simulation of selective laser melting of metals enabled by new high-fidelity multiphase, multiphysics computational tool. Comput Methods Appl Mech Eng 399:115422. https://doi.org/10.1016/j.cma.2022.115422

    Article  MathSciNet  Google Scholar 

  30. Wang Z, Liu M (2019) Dimensionless analysis on selective laser melting to predict porosity and track morphology. J Mater Process Technol 273:116238. https://doi.org/10.1016/j.jmatprotec.2019.05.019

    Article  Google Scholar 

  31. Kloss C, Goniva C, König A, Amberger S, Pirker S (2012) Models, algorithms and validation for opensource DEM and CFD-DEM. Prog Comput Fluid Dyn 12:140–152. https://doi.org/10.1504/PCFD.2012.047457

    Article  MathSciNet  Google Scholar 

  32. Afrasiabi M, Bambach M (2023) Modelling and simulation of metal additive manufacturing processes with particle methods: a review. Virtual Phys Prototyp 18:e2274494. https://doi.org/10.1080/17452759.2023.2274494

    Article  Google Scholar 

  33. Lian Y, Chen J, Li M-J, Gao R (2023) A multi-physics material point method for thermo-fluid-solid coupling problems in metal additive manufacturing processes. Comput Methods Appl Mech Eng 416:116297. https://doi.org/10.1016/j.cma.2023.116297

    Article  MathSciNet  Google Scholar 

  34. Zakirov A, Belousov S, Bogdanova M, Korneev B, Stepanov A, Perepelkina A, Levchenko V, Meshkov A, Potapkin B (2020) Predictive modeling of laser and electron beam powder bed fusion additive manufacturing of metals at the mesoscale. Addit Manuf 35:101236. https://doi.org/10.1016/j.addma.2020.101236

    Article  Google Scholar 

  35. Lin Y, Lüthi C, Afrasiabi M, Bambach M (2023) Enhanced heat source modeling in particle-based laser manufacturing simulations with ray tracing. Int J Heat Mass Transf 214:124378. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124378

    Article  Google Scholar 

  36. Russell MA, Souto-Iglesias A, Zohdi TI (2018) Numerical simulation of laser fusion additive manufacturing processes using the SPH method. Comput Methods Appl Mech Eng 341:163–187. https://doi.org/10.1016/j.cma.2018.06.033

    Article  MathSciNet  Google Scholar 

  37. Dao MH, Lou J (2021) Simulations of laser assisted additive manufacturing by smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 373:113491. https://doi.org/10.1016/j.cma.2020.113491

    Article  MathSciNet  Google Scholar 

  38. Fuchs SL (2022) A versatile SPH modeling framework for coupled microfluid-powder dynamics in additive manufacturing: binder jetting, material jetting, directed energy deposition and powder bed fusion. Eng Comput 38:4853–4877. https://doi.org/10.1007/s00366-022-01724-4

    Article  Google Scholar 

  39. Fürstenau J-P, Wessels H, Weißenfels C, Wriggers P (2020) Generating virtual process maps of SLM using powder-scale SPH simulations. Comput Part Mech 7:655–677. https://doi.org/10.1007/s40571-019-00296-3

    Article  Google Scholar 

  40. Afrasiabi M, Lüthi C, Bambach M, Wegener K (2022) Smoothed particle hydrodynamics modeling of the multi-layer laser powder bed fusion process. Proc CIRP 107:276–282. https://doi.org/10.1016/j.procir.2022.04.045

    Article  Google Scholar 

  41. Afrasiabi M, Lüthi C, Bambach M, Wegener K (2021) Multi-resolution SPH simulation of a laser powder bed fusion additive manufacturing process. Appl Sci 11:2962. https://doi.org/10.3390/app11072962

    Article  Google Scholar 

  42. Weißenfels C (2022) Simulation of additive manufacturing using Meshfree methods: with focus on requirements for an accurate solution. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-87337-0

    Book  Google Scholar 

  43. Zhang H, Zhang Z, He F, Liu M (2022) Numerical investigation on the water entry of a 3D circular cylinder based on a GPU-accelerated SPH method. Eur J Mech BFluids 94:1–16. https://doi.org/10.1016/j.euromechflu.2022.01.007

    Article  MathSciNet  Google Scholar 

  44. Löschner F, splashsurf (2023) https://www.floeschner.de/splashsurf. Accessed 8 Nov 2023

  45. Hirsch C (2007) Numerical computation of internal and external flows: the fundamentals of computational fluid dynamics. Elsevier

    Google Scholar 

  46. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a Meshfree particle method. World Scientific, New Jersey

    Book  Google Scholar 

  47. Hashemi H, Sliepcevich C (1967) A numerical method for solving two-dimensional problems of heat conduction with change of phase. Chem Eng Prog Symp Ser, pp 34–41

  48. Wang Z, Yan W, Liu WK, Liu M (2019) Powder-scale multi-physics modeling of multi-layer multi-track selective laser melting with sharp interface capturing method. Comput Mech 63:649–661. https://doi.org/10.1007/s00466-018-1614-5

    Article  Google Scholar 

  49. Wang Z, Sugiyama T, Matsunaga T, Koshizuka S (2022) A multi-resolution particle method with high order accuracy for solid-liquid phase change represented by sharp moving interface. Comput Fluids 247:105646. https://doi.org/10.1016/j.compfluid.2022.105646

    Article  MathSciNet  Google Scholar 

  50. Zhou X, Wang Z-K, Hu P, Liu M-B (2022) Discrepancies between Gaussian surface heat source model and ray tracing heat source model for numerical simulation of selective laser melting. Comput Mech. https://doi.org/10.1007/s00466-022-02235-1

    Article  Google Scholar 

  51. Meier C, Fuchs SL, Hart AJ, Wall WA (2021) A novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modeling. Comput Methods Appl Mech Eng 381:113812. https://doi.org/10.1016/j.cma.2021.113812

    Article  MathSciNet  Google Scholar 

  52. Sun P-N, Colagrossi A, Marrone S, Zhang AM (2017) The δ p l u s -SPH model: simple procedures for a further improvement of the SPH scheme. Comput Methods Appl Mech Eng 315:25–49. https://doi.org/10.1016/j.cma.2016.10.028

    Article  MathSciNet  Google Scholar 

  53. Gomes DDSDM, Da Hora MDAGM, Nascimento GDC (2022) Application of recent SPH formulations to simulate free-surface flow in a vertical slot fishway. Comput Part Mech 9:941–951. https://doi.org/10.1007/s40571-021-00416-y

    Article  Google Scholar 

  54. Sun P-N, Colagrossi A, Marrone S, Antuono M, Zhang AM (2018) Multi-resolution delta-plus-SPH with tensile instability control: towards high Reynolds number flows. Comput Phys Commun 224:63–80. https://doi.org/10.1016/j.cpc.2017.11.016

    Article  MathSciNet  Google Scholar 

  55. Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183:2570–2580. https://doi.org/10.1016/j.cpc.2012.07.006

    Article  MathSciNet  Google Scholar 

  56. Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved SPH method: towards higher order convergence. J Comput Phys 225:1472–1492. https://doi.org/10.1016/j.jcp.2007.01.039

    Article  MathSciNet  Google Scholar 

  57. Bonet J, Lok T-SL (1999) Variational and momentum preservation aspects of smooth particle hydrodynamic formulations. Comput Methods Appl Mech Eng 180:97–115. https://doi.org/10.1016/S0045-7825(99)00051-1

    Article  MathSciNet  Google Scholar 

  58. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159:290–311. https://doi.org/10.1006/jcph.2000.6439

    Article  Google Scholar 

  59. Lyu H-G, Sun P-N (2022) Further enhancement of the particle shifting technique: towards better volume conservation and particle distribution in sph simulations of violent free-surface flows. Appl Math Model 101:214–238. https://doi.org/10.1016/j.apm.2021.08.014

    Article  MathSciNet  Google Scholar 

  60. Marrone S, Colagrossi A, Le Touzé D, Graziani G (2010) Fast free-surface detection and level-set function definition in SPH solvers. J Comput Phys 229:3652–3663. https://doi.org/10.1016/j.jcp.2010.01.019

    Article  Google Scholar 

  61. Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33:333–353. https://doi.org/10.1002/1097-0363(20000615)33:3%3c333::AID-FLD11%3e3.0.CO;2-7

    Article  Google Scholar 

  62. Vergnaud A, Oger G, Le Touzé D, DeLeffe M, Chiron L (2022) C-CSF: accurate, robust and efficient surface tension and contact angle models for single-phase flows using SPH. Comput Methods Appl Mech Eng 389:114292. https://doi.org/10.1016/j.cma.2021.114292

    Article  MathSciNet  Google Scholar 

  63. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354. https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  MathSciNet  Google Scholar 

  64. Von Allmen M, Blatter A (1995) Laser-beam interactions with materials: physical principles and applications. Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-57813-7

    Book  Google Scholar 

  65. Wang Z, Duan G, Matsunaga T, Sugiyama T (2020) Consistent Robin boundary enforcement of particle method for heat transfer problem with arbitrary geometry. Int J Heat Mass Transf 157:119919. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119919

    Article  Google Scholar 

  66. Bag S, Trivedi A, De A (2009) Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source. Int J Therm Sci 48:1923–1931. https://doi.org/10.1016/j.ijthermalsci.2009.02.010

    Article  Google Scholar 

  67. Zhang H, Li X, Feng K, Liu M (2023) 3D large-scale SPH modeling of vehicle wading with GPU acceleration. Sci China Phys Mech Astron 66:104711. https://doi.org/10.1007/s11433-023-2137-5

    Article  Google Scholar 

  68. Monaghan JJ, Rafiee A (2013) A simple SPH algorithm for multi-fluid flow with high density ratios. Int J Numer Methods Fluids 71:537–561. https://doi.org/10.1002/fld.3671

    Article  MathSciNet  Google Scholar 

  69. Khayyer A, Gotoh H, Shimizu Y (2017) Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context. J Comput Phys 332:236–256. https://doi.org/10.1016/j.jcp.2016.12.005

    Article  MathSciNet  Google Scholar 

  70. Yang P, Huang C, Zhang Z, Long T, Liu M (2021) Simulating natural convection with high rayleigh numbers using the smoothed particle hydrodynamics method. Int J Heat Mass Transf 166:120758. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120758

    Article  Google Scholar 

  71. De Vahl Davis G (1983) Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Methods Fluids 3:249–264. https://doi.org/10.1002/fld.1650030305

    Article  Google Scholar 

  72. Arpino F, Massarotti N, Mauro A (2010) High Rayleigh number laminar-free convection in cavities: new benchmark solutions. Numer Heat Transf Part B Fundam 58:73–97. https://doi.org/10.1080/10407790.2010.508438

    Article  Google Scholar 

  73. Wan DC, Patnaik BSV, Wei GW (2001) A new benchmark quality solution for the buoyancy-driven cavity by discrete singular convolution. Numer Heat Transf Part B Fundam 40:199–228. https://doi.org/10.1080/104077901752379620

    Article  Google Scholar 

  74. Zhang ZL, Walayat K, Huang C, Chang JZ, Liu MB (2019) A finite particle method with particle shifting technique for modeling particulate flows with thermal convection. Int J Heat Mass Transf 128:1245–1262. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.074

    Article  Google Scholar 

  75. Zhang F, Yang P, Liu M (2023) An improved continuum surface tension model in SPH for simulating free-surface flows and heat transfer problems. J Comput Phys 490:112322. https://doi.org/10.1016/j.jcp.2023.112322

    Article  MathSciNet  Google Scholar 

  76. Yang H, He Y (2010) Solving heat transfer problems with phase change via smoothed effective heat capacity and element-free Galerkin methods. Int Commun Heat Mass Transf 37:385–392. https://doi.org/10.1016/j.icheatmasstransfer.2009.12.002

    Article  Google Scholar 

  77. Wang J, Zhang X (2020) Coupled solid-liquid phase change and thermal flow simulation by particle method. Int Commun Heat Mass Transf 113:104519. https://doi.org/10.1016/j.icheatmasstransfer.2020.104519

    Article  Google Scholar 

  78. Rathjen KA, Jiji LM (1971) Heat conduction with melting or freezing in a corner. J Heat Transf 93:101–109. https://doi.org/10.1115/1.3449740

    Article  Google Scholar 

  79. Shah A, Kumar A, Ramkumar J (2018) Analysis of transient thermo-fluidic behavior of melt pool during spot laser welding of 304 stainless-steel. J Mater Process Technol 256:109–120. https://doi.org/10.1016/j.jmatprotec.2018.02.005

    Article  Google Scholar 

  80. He X, Fuerschbach PW, DebRoy T (2003) Heat transfer and fluid flow during laser spot welding of 304 stainless steel. J Phys Appl Phys 36:1388–1398. https://doi.org/10.1088/0022-3727/36/12/306

    Article  Google Scholar 

  81. The Minerals, Metals & Materials Society (TMS) (2011) Lights—open source discrete element simulations of granular materials based on lamps, 1st edn. Wiley

    Google Scholar 

  82. Cremers DA, Lewis GK, Korzekwa DR (1991) Measurement of energy deposition during pulsed laser welding. Meas Energy Depos Pulsed Laser Weld 70:159–167

    Google Scholar 

  83. Gusarov AV, Yadroitsev I, Bertrand Ph, Smurov I (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transf 131:072101. https://doi.org/10.1115/1.3109245

    Article  Google Scholar 

  84. Xiang Y, Zhang S, Wei Z, Li J, Wei P, Chen Z, Yang L, Jiang L (2018) Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V. Appl Phys A 124:685. https://doi.org/10.1007/s00339-018-2056-9

    Article  Google Scholar 

  85. Parivendhan G, Cardiff P, Flint T, Tuković Ž, Obeidi M, Brabazon D, Ivanković A (2023) A numerical study of processing parameters and their effect on the melt-track profile in laser powder bed fusion processes. Addit Manuf 67:103482. https://doi.org/10.1016/j.addma.2023.103482

    Article  Google Scholar 

  86. Jónasson K (ed) (2012) Applied parallel and scientific computing: 10th international conference, PARA 2010, Reykjavík, Iceland, June 6–9, 2010. Revised Selected Papers, Part II, Springer, Berlin Heidelberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28145-7

    Book  Google Scholar 

  87. Zhang X, Liu S (2017) SPH haptic interaction with multiple-fluid simulation. Virtual Real 21:165–175. https://doi.org/10.1007/s10055-017-0308-1

    Article  Google Scholar 

  88. Wang Z (2022) Numerical and theoretical investigations on the thermal particle-fluid interactions in powder-based laser additive manufacturing [Ph D Thesis], Dissertation, Peking University

Download references

Acknowledgements

This work has been partially supported by the National Natural Science Foundation of China [Grant Nos. 12032002 and U22A20256]; the National Natural Science Foundation of Beijing [No. L212023]; and the Sino-German Mobility Programme [No. M-0210].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moubin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhou, X., Zhang, F. et al. A novel smoothed particle hydrodynamics method for multi-physics simulation of laser powder bed fusion. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02465-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-024-02465-5

Keywords

Navigation