Skip to main content
Log in

A DG/CR discretization for the variational phase-field approach to fracture

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Variational phase-field models of fracture are widely used to simulate nucleation and propagation of cracks in brittle materials. They are based on the approximation of the solutions of a free-discontinuity fracture energy by two smooth function: a displacement and a damage field. Their numerical implementation is typically based on the discretization of both fields by nodal \(\mathbb {P}^1\) Lagrange finite elements. In this article, we propose a nonconforming approximation by discontinuous elements for the displacement and nonconforming elements, whose gradient is more isotropic, for the damage. The handling of the nonconformity is derived from that of heterogeneous diffusion problems. We illustrate the robustness and versatility of the proposed method through series of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code availability

The source code and data files for all examples are available at https://github.com/marazzaf/DG_CR.git.

References

  1. Bourdin B (1998) Une méthode variationnelle en mécanique de la rupture, théorie et applications numériques. PhD thesis, Université Paris Nord, Institut Galilée, France

  2. Bourdin B, Francfort GA, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826. https://doi.org/10.1016/S0022-5096(99)00028-9

    Article  MathSciNet  MATH  Google Scholar 

  3. Bourdin B, Francfort GA, Marigo J-J (2008) The variational approach to fracture. J Elast 91(1–3):1–148. https://doi.org/10.1007/s10659-007-9107-3

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourdin B (2007) Numerical implementation of a variational formulation of quasi-static brittle fracture. Interfaces Free Bound 9(3):411–430. https://doi.org/10.4171/IFB/171

    Article  MathSciNet  MATH  Google Scholar 

  5. Francfort G, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342. https://doi.org/10.1016/S0022-5096(98)00034-9

    Article  MathSciNet  MATH  Google Scholar 

  6. Tanné E, Li T, Bourdin B, Marigo J-J, Maurini C (2018) Crack nucleation in variational phase-field models of brittle fracture. J Mech Phys Solids 110:80–99. https://doi.org/10.1016/j.jmps.2017.09.006

    Article  MathSciNet  Google Scholar 

  7. Kumar A, Bourdin B, Francfort GA, Lopez-Pamies O (2020) Revisiting nucleation in the phase-field approach to brittle fracture. J Mech Phys Solids 142:104027. https://doi.org/10.1016/j.jmps.2020.104027

    Article  MathSciNet  Google Scholar 

  8. Maurini C, Bourdin B, Gauthier G, Lazarus V (2013) Crack patterns obtained by unidirectional drying of a colloidal suspension in a capillary tube: experiments and numerical simulations using a two-dimensional variational approach. Int J Fract 184(1–2):75–91. https://doi.org/10.1007/s10704-013-9824-5

    Article  Google Scholar 

  9. Bourdin B, Marigo J-J, Maurini C, Sicsic P (2014) Morphogenesis and propagation of complex cracks induced by thermal shocks. Phys Rev Lett 112(1):014301. https://doi.org/10.1103/PhysRevLett.112.014301

    Article  Google Scholar 

  10. Brach S, Tanné E, Bourdin B, Bhattacharya K (2019) Phase-field study of crack nucleation and propagation in elastic-perfectly plastic bodies. Comput Methods Appl Mech Eng 353(15):44–65. https://doi.org/10.1016/j.cma.2019.04.027

    Article  MathSciNet  MATH  Google Scholar 

  11. Chukwudozie C, Bourdin B, Yoshioka K (2019) A variational phase-field model for hydraulic fracturing in porous media. Comput Methods Appl Mech Eng 347:957–982. https://doi.org/10.1016/j.cma.2018.12.037

    Article  MathSciNet  MATH  Google Scholar 

  12. Ambrosio L, Tortorelli VM (1992) On the approximation of free discontinuity problems. Boll Un Mat Ital B (7) 6(1):105–123

    MathSciNet  MATH  Google Scholar 

  13. Braides A (1998) Approximation of free-discontinuity problems. Lecture notes in mathematics, vol 1694. Springer, Berlin

    Book  MATH  Google Scholar 

  14. Bellettini G, Coscia A (1994) Discrete approximation of a free discontinuity problem. Numer Funct Anal Optim 15(3–4):201–224. https://doi.org/10.1080/01630569408816562

    Article  MathSciNet  MATH  Google Scholar 

  15. Bourdin B (1999) Image segmentation with a finite element method. M2AN Math Model Numer Anal 33(2):229–244. https://doi.org/10.1051/m2an:1999114

    Article  MathSciNet  MATH  Google Scholar 

  16. Yoshioka K, Naumov D, Kolditz O (2020) On crack opening computation in variational phase-field models for fracture. Comput Methods Appl Mech Eng 369:113210. https://doi.org/10.1016/j.cma.2020.113210

    Article  MathSciNet  MATH  Google Scholar 

  17. Miehe C, Mauthe S, Teichtmeister S (2015) Minimization principles for the coupled problem of Darcy–Biot-type fluid transport in porous media linked to phase field modeling of fracture. J Mech Phys Solids 82:186–217. https://doi.org/10.1016/j.jmps.2015.04.006

    Article  MathSciNet  Google Scholar 

  18. Mikelic A, Wheeler MF, Wick T (2015) Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput Geosci 19(6):1171–1195. https://doi.org/10.1007/s10596-015-9532-5

    Article  MathSciNet  MATH  Google Scholar 

  19. Wilson ZA, Landis CM (2016) Phase-field modeling of hydraulic fracture. J Mech Phys Solids 96:264–290. https://doi.org/10.1016/j.jmps.2016.07.019

    Article  MathSciNet  MATH  Google Scholar 

  20. Ziaei-Rad V, Shen L, Jiang J, Shen Y (2016) Identifying the crack path for the phase field approach to fracture with non-maximum suppression. Comput Methods Appl Mech Eng 312:304–321. https://doi.org/10.1016/j.cma.2016.08.025

    Article  MathSciNet  MATH  Google Scholar 

  21. Engwer C, Schumacher L (2017) A phase field approach to pressurized fractures using discontinuous Galerkin methods. Math Comput Simul 137:266–285. https://doi.org/10.1016/j.matcom.2016.11.001

    Article  MathSciNet  MATH  Google Scholar 

  22. Muixí A, Rodríguez-Ferran A, Fernández-Méndez S (2020) A hybridizable discontinuous Galerkin phase-field model for brittle fracture with adaptive refinement. Int J Numer Methods Eng 121(6):1147–1169. https://doi.org/10.1002/nme.6260

    Article  MathSciNet  MATH  Google Scholar 

  23. Chambolle A, Pock T (2020) Crouzeix–Raviart approximation of the total variation on simplicial meshes. J Math Imaging Vis 62(6):872–899. https://doi.org/10.1007/s10851-019-00939-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Pham KH, Ravi-Chandar K, Landis CM (2017) Experimental validation of a phase-field model for fracture. Int J Fract 205(1):83–101. https://doi.org/10.1007/s10704-017-0185-3

    Article  Google Scholar 

  25. Giacomini A (2005) Ambrosio–Tortorelli approximation of quasi-static evolution of brittle fractures. Calc Var Partial Diff 22(2):129–172. https://doi.org/10.1007/s00526-004-0269-6

    Article  MathSciNet  MATH  Google Scholar 

  26. Dal Maso G, Iurlano F (2013) Fracture models as \(\Gamma \)-limit of damage models. Commun Pure Appl Anal 12(4):1657–1686. https://doi.org/10.3934/cpaa.2013.12.1657

  27. Ciarlet PG (2002) The finite element method for elliptic problems. SIAM. https://doi.org/10.1137/1.9780898719208

    Article  MATH  Google Scholar 

  28. Di Pietro DA, Ern A (2011) Mathematical aspects of discontinuous Galerkin methods, vol 69. Springer, Berlin. https://doi.org/10.1007/978-3-642-22980-0

    Book  MATH  Google Scholar 

  29. Ern A, Guermond J-L (2013) Theory and practice of finite elements, vol 159. Springer, New York. https://doi.org/10.1007/978-1-4757-4355-5

    Book  MATH  Google Scholar 

  30. Arnold DN (1982) An interior penalty finite element method with discontinuous elements. SIAM J Numer Anal 19(4):742–760. https://doi.org/10.1137/0719052

    Article  MathSciNet  MATH  Google Scholar 

  31. Dryja M (2003) On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput Methods Appl Math 3(1):76–85. https://doi.org/10.2478/cmam-2003-0007

    Article  MathSciNet  MATH  Google Scholar 

  32. Di Pietro DA, Ern A, Guermond J-L (2008) Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection. SIAM J Numer Anal 46(2):805–831. https://doi.org/10.1137/06067610

    Article  MathSciNet  MATH  Google Scholar 

  33. Rivière B, Wheeler M, Girault V (2001) A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J Numer Anal 39(3):902–931. https://doi.org/10.1137/S003614290037174X

    Article  MathSciNet  MATH  Google Scholar 

  34. Riviere B, Shaw S, Wheeler MF, Whiteman JR (2003) Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numer Math 95(2):347–376. https://doi.org/10.1007/978-3-642-59721-3_17

    Article  MathSciNet  MATH  Google Scholar 

  35. Logg A, Mardal K-A, Wells GN et al (2012) Automated solution of differential equations by the finite element method. Springer, Berlin. https://doi.org/10.1007/978-3-642-23099-8

    Book  MATH  Google Scholar 

  36. Zehnder AT (2012) Fracture mechanics. Lecture notes in applied and computational mechanics, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2595-9

    Book  Google Scholar 

  37. Chambolle A, Francfort GA, Marigo J-J (2009) When and how do cracks propagate? J Mech Phys Solids 57(9):1614–1622. https://doi.org/10.1016/j.jmps.2009.05.009

    Article  MathSciNet  MATH  Google Scholar 

  38. Hossain MZ, Hsueh C-J, Bourdin B, Bhattacharya K (2014) Effective toughness of heterogeneous media. J Mech Phys Solids 71:320–348. https://doi.org/10.1016/j.jmps.2014.06.002

    Article  MathSciNet  Google Scholar 

  39. Destuynder P, Djaoua P, Chesnay L, Nedelec JC (1981) Sur une interprétation mathématique de l’intégrale de Rice en théorie de la rupture fragile. Math Methods Appl Sci 3(1):70–87

    Article  MathSciNet  MATH  Google Scholar 

  40. Sicsic P, Marigo J-J (2013) From gradient damage laws to Griffith’s theory of crack propagation. J Elast 113(1):55–74. https://doi.org/10.1007/s10659-012-9410-5

    Article  MathSciNet  MATH  Google Scholar 

  41. Li T, Marigo J-J, Guilbaud D, Potapov S (2016) Gradient damage modeling of brittle fracture in an explicit dynamics context. Int J Numer Methods Eng 108(11):1381–1405. https://doi.org/10.1002/nme.5262

    Article  MathSciNet  Google Scholar 

  42. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405. https://doi.org/10.1007/s00466-014-1109-y

    Article  MathSciNet  MATH  Google Scholar 

  43. Bourdin B (2019) mef90/vDef: variational models of defect mechanics. https://doi.org/10.5281/zenodo.3242131. https://github.com/bourdin/mef90

  44. Pham K, Marigo J-J, Maurini C (2011) The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models. J Mech Phys Solids 59(6):1163–1190. https://doi.org/10.1016/j.jmps.2011.03.010

    Article  MathSciNet  MATH  Google Scholar 

  45. Baldelli A, Maurini C (2021) Numerical bifurcation and stability analysis of variational gradient-damage models for phase-field fracture. J Mech Phys Solids 152:104424. https://doi.org/10.1016/j.jmps.2021.104424

  46. Kumar A, Bourdin B, Francfort G, Lopez-Pamies O (2020) Revisiting nucleation in the phase-field approach to brittle fracture. J Mech Phys Solids 142:104027. https://doi.org/10.1016/j.jmps.2020.104027

    Article  MathSciNet  Google Scholar 

  47. Droniou J, Eymard R, Gallouët T, Guichard C, Herbin R (2018) The gradient discretisation method, vol 82. Springer

  48. Brézis H (2011) Functional analysis, Sobolev spaces and partial differential equations, vol 2. Springer, New York

Download references

Acknowledgements

FM would like to thank A. Chambolle for stimulating discussions. FM’s work was supported by the US National Science Foundation under Grant Number OIA-1946231 and the Louisiana Board of Regents for the Louisiana Materials Design Alliance (LAMDA). Part of this work was performed while BB was the A.K. & Shirley Barton Professor of Mathematics at Louisiana State University. BB acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), RGPIN-2022-04536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blaise Bourdin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Frédéric Marazzato and Blaise Bourdin authors contributed equally to this work.

Appendix: A Proof of theorem 1

Appendix: A Proof of theorem 1

Note that the initial damage field is such that \(\alpha _0 = 0\). The following proof works by recurrence. Let us consider that at each time-step \(t_i\), the discrete damage field at the previous time-step \(t_{i-1}\), written \(\alpha _{i- 1,h}\), converges strongly in \(H^1 (\Omega )\) towards \(\alpha _{i-1} \in H^1(\Omega )\).

Lemma 1

(Compactness) Let independently \(u_{i,h} \in U_{i,h}\) be solution of (10) and \(\alpha _{i,h}\in A_h\) be a solution of (11). There exists \(v_{i} \in U_i\) and \(\beta _i \in A\) such that, up to a subsequence, \(u_{i,h} \rightarrow v_i\) strongly in \(\left( L^2(\Omega )\right) ^d\) and \(\alpha _{i,h} \rightarrow \beta _i\) strongly in \(L^2(\Omega )\), and \(\nabla _h u_{i,h} \rightharpoonup \nabla v_i\) weakly in \(\left( L^2(\Omega )\right) ^{d \times d}\) and \(\nabla _h \alpha _{i,h} \rightharpoonup \nabla \beta _i\) weakly in \(L^2(\Omega )^d\).

Proof

Since \(w_i \in \left( H^{1/2}(\partial \Omega )\right) ^d\), there exists \(f_i \in \left( H^1(\Omega )\right) ^d\) such that \({f_i}_{|\partial \Omega _D} = w_i\) on \(\partial \Omega _D\). Therefore, one has

$$\begin{aligned} {\mathcal {U}}_h(\alpha _{i,h};u_{i,h},u_{i,h} - f_i) = 0. \end{aligned}$$

where \([f_i]_F = 0, \forall F \in {\mathcal {F}}^i_h\) because \(f_i \in \left( H^1(\Omega )\right) ^d\). As in the proof of Proposition 1, one has

$$\begin{aligned} \frac{2 \mu \eta _\ell }{K^2} \Vert \textrm{e}_h(u_{i,h}) \Vert ^2_{L^2} + \frac{\zeta \eta _\ell ^2}{1+\eta _\ell } |u_{i,h}|^2_J \le {\mathcal {U}}_h(\alpha _{i,h};u_{i,h},u_{i,h}). \end{aligned}$$

Therefore,

$$\begin{aligned} C_1 \Vert u_{i,h} \Vert _{ip}^2 \le {\mathcal {U}}_h(\alpha _{i,h};u_{i,h},u_{i,h}) = {\mathcal {U}}_h(\alpha _{i,h};u_{i,h},f_i) \\ \le C_2 \Vert u_{i,h} \Vert _{ip}, \end{aligned}$$

where \(C_1\) and \(C_2\) are non-negative constants.

Thus \(\Vert u_{i,h} \Vert _{ip}\) is bounded from above. We can apply Kolmogorov compactness criterion [28, p. 194]. Thus, there exists \(v_i \in U_i\) such that, up to a subsequence, \(u_{i,h} \rightarrow v_i\) strongly in \(\left( L^2(\Omega )\right) ^d\) and \(\nabla _h u_{i,h} \rightharpoonup \nabla v_i\) weakly in \(\left( L^2(\Omega )\right) ^{d\times d}\).

Now let us get a bound on the damage. Testing (11) with \(\alpha _{i-1,h}\), one has

$$\begin{aligned} \mathcal {A}_{h}(u_{i,h}; \alpha _ {i,h}, \alpha _{i,h} - \alpha _{i- 1,h}) \le f(u_h; \alpha _{i,h} - \alpha _{i-1,h}). \end{aligned}$$

Thus, using a Cauchy–Schwarz inequality and the fact that \(\alpha _{h}\le 1\) and \(\alpha _{i-1,h} \le 1\), one has

$$\begin{aligned} \frac{2G_c}{c_w}&\int _ {\Omega } \ell |\nabla _h \alpha _ {i,h}|^2 dx \le \mathcal {A}_{h} (u_{i,h}; \alpha _{i,h}, \alpha _ {i,h})\\&\le \mathcal {A}_{h}(u_ {i,h}; \alpha _{i,h}, \alpha _{i- 1,h}) + f(u_{i,h}; \alpha _{i,h} - \alpha _{i-1,h}) \\&\le 2 \int _ {\Omega } \mathbb {C}\textrm{e}_h(u_ {i,h}) \cdot \textrm{e}_h(u_{i,h}) dx \\&\quad + \frac{2G_c\ell }{c_w} \Vert \nabla _h \alpha _{i,h} \Vert _ {L^2(\Omega )}\Vert \nabla _h \alpha _{i-1,h}\Vert _{L^2 (\Omega )} \\&\le C\Vert u_{i,h} \Vert _{ip}^2 + C'\Vert \nabla _h \alpha _{i,h}\Vert _{L^2(\Omega )} \end{aligned}$$

where \(C>0\) and \(C'>0\) are generic non-negative constants.

The second order polynomial in the variable \(\Vert \nabla _h \alpha _{i,h}\Vert _{L^2(\Omega )}\) is negative between its two real roots and thus \(\Vert \nabla _h \alpha _{i,h}\Vert _{L^2(\Omega )}\) is bounded from above. Using the compactness of the Crouzeix–Raviart FE [47, p. 297], there exists \(\beta _i \in A\) such that, up to a subsequence, \(\alpha _{i,h} \rightarrow \beta _i\) strongly in \(L^2(\Omega )\) and \(\nabla _h \alpha _{i,h} \rightharpoonup \nabla \beta _i\) weakly in \(\left( L^2(\Omega )\right) ^d\).

\(\square \)

Proposition 3

(Existence of solution to the discretized problem) There exists \((u_{i,h},\alpha _{i,h}) \in V_{i,h}\) solving (10) and (11) simultaneously.

Proof

Let \(T:(v_h,\beta _h) \mapsto (u_h,\alpha _h)\), where \(u_h\) is the solution of \({\mathcal {U}}_h(\beta _h;u_h,\bullet ) = 0\) over \(U_{i,h}\) and \(\alpha _h\) is the solution of \(\mathcal {A}_h (v_h;\alpha _h,\bullet -\alpha _{h}) \ge f(v_h; \bullet -\alpha _{h})\) over \(K_{i,h}\). Assuming \(v_h\) and \(\beta _h\) verify the bounds proved in the proof of Lemma 1, then \(u_h\) and \(\alpha _h\) verify these same bounds. Thus T is a mapping of a nonempty compact convex subset of \(V_{i,h}\) into itself. As, \({\mathcal {U}}_h(\beta _h)\) and \({\mathcal {A}}_h(v_h)\) are continuous bilinear forms, T is a continuous map. As a consequence, using Brouwer fixed point theorem [48, p. 179], there exists a fixed point \((u_{i,h},\alpha _{i,h})\) solving (10) and (11) simultaneously. \(\square \)

Lemma 2

\((v_i,\beta _i)\) is a solution of (3a).

Proof

Let \(\varphi \in \left( {\mathcal {C}}_c^\infty (\Omega )\right) ^d\) be a function with compact support in \(\Omega \). Testing (10) with \(\pi _h \varphi \), one has

$$\begin{aligned}{} & {} \int _{\Omega } (a_h(\alpha _{i,h}) + \eta _\ell ) \mathbb {C}\textrm{e}_h(u_{i,h}) \cdot \textrm{e}_h(\pi _h \varphi )dx \\{} & {} \quad - \sum _{F \in \mathcal {F}^i_h} \int _F n \cdot \left( \{(a_h(\alpha _ {i,h}) + \eta _\ell ) \sigma _h(u_ {i,h}) \}_F \cdot [\pi _h \varphi ]_F\right. \\{} & {} \quad \left. -\{(a_h(\alpha _{i,h}) + \eta _\ell ) \sigma _h(\pi _h \varphi ) \}_F \cdot [u_{i,h}]_F \right) dS\\{} & {} \quad +\, \sum _{F \in {\mathcal {F}}^i_h} \frac{\zeta \gamma _F}{h_F} \int _F [u_{i,h}]_F \cdot [\pi _h \varphi ]_F dS = 0. \end{aligned}$$

The last two terms in the left-hand side vanish when \(h \rightarrow 0\) because \(\varphi ,v_i \in \left( H^1(\Omega )\right) ^d\). Regarding the first term in the left-hand side, one has

$$\begin{aligned} \begin{aligned}&\int _{\Omega } (a_h(\alpha _{i,h}) + \eta _\ell ) \mathbb {C}\textrm{e}_h(u_{i,h}) \cdot \textrm{e}_h(\pi _h \varphi )dx \\&\quad = \int _ {\Omega } (a(\beta _i) + \eta _\ell ) \mathbb {C}\textrm{e}_h(u_{i,h}) \cdot \textrm{e}_h(\pi _h \varphi )dx \\&\qquad + \int _ {\Omega } (a_h(\alpha _{i,h}) - \Pi _h a(\beta _i)) \mathbb {C}\textrm{e}_h (u_{i,h}) \cdot \textrm{e}_h(\pi _h \varphi ) dx \\&\qquad + \int _{\Omega } (\Pi _h a (\beta _i) - a(\beta _i)) \mathbb {C} \textrm{e}_h(u_{i,h}) \cdot \textrm{e}_h(\pi _h \varphi )dx \\&\quad = (I) + (II) + (III) \end{aligned} \end{aligned}$$

Passing to the limit in (I), one obtains the expected term

$$\begin{aligned} \int _{\Omega } (a(\beta _i) + \eta _\ell ) \mathbb {C}\textrm{e}(v_i) \cdot \textrm{e}(\varphi )dx. \end{aligned}$$

Let us now prove that (II) and (III) vanish as \(h \rightarrow 0\). Using a Cauchy–Schwarz inequality, one has

$$\begin{aligned} \begin{aligned} (II)&\le \left( \int _{\Omega } (\mathbb {C}\textrm{e}_h (u_{{i,}h}) \cdot \textrm{e}_h(\pi _h \varphi ))^2dx \right) ^{1/2} \\&\quad \Vert \Pi _h a(\alpha _{i,h}) - \Pi _h a (\beta _i) \Vert _{L^2(\Omega )} \\&\le C \Vert \varphi \Vert _{W^ {1,\infty }(\Omega )} \Vert u_{i,h} \Vert _{ip} \Vert \Pi _h a(\alpha _{i,h}) - \Pi _h a(\beta _i) \Vert _ {L^2(\Omega )}. \end{aligned} \end{aligned}$$

We focus on the second term in the right-hand side.

$$\begin{aligned} \Vert \Pi _h a(\alpha _{i,h}) - \Pi _h a(\beta _i) \Vert _{L^2(\Omega )} \le \Vert a(\alpha _{i,h}) - a(\beta _i) \Vert _{L^2(\Omega )}, \end{aligned}$$

since \(\Pi _h\) is a projection in \(L^2(\Omega )\). Using the strong convergence \(\alpha _h \rightarrow \beta _i\) in \(L^2(\Omega )\) and the fact that a is continuous gives the desired result. Regarding (III), using a Cauchy–Schwarz inequality, one has

$$\begin{aligned} \begin{aligned} (III)&\le \left( \int _{\Omega } (\mathbb {C}\textrm{e}_h(u_{i,h}) \cdot \textrm{e}_h(\pi _h \varphi ))^2dx \right) ^{1/2} \Vert a(\beta _i) \\&\quad - \Pi _h a(\beta _i) \Vert _{L^2(\Omega )} \\&\le C \Vert \varphi \Vert _{W^{1,\infty }(\Omega )} \Vert u_{i,h}\Vert _{ip} \Vert a(\beta _i) - \Pi _h a(\beta _i) \Vert _{L^2(\Omega )} \end{aligned}, \end{aligned}$$

where \(C>0\) is a generic non-negative constant. Using a classical local approximation result (see [29, Proposition 1.135] for instance), one has:

$$\begin{aligned} \Vert a(\beta _i) - \Pi _h a(\beta _i) \Vert _{L^2(\Omega )} \le Ch \Vert \nabla (a(\beta _i))\Vert _{L^2(\Omega )}, \end{aligned}$$

where \(\nabla (a(\beta _i)) = a'(\beta _i)\nabla \beta _i \in \left( L^2(\Omega )\right) ^d\) because \(\beta _i \in L^\infty (\Omega ) \cap H^1(\Omega )\) and a is \({\mathcal {C}}^1\) and thus (III) vanishes as \(h \rightarrow 0\). \(\square \)

Lemma 3

\(\textrm{e}_h(u_{i,h}) \rightarrow \textrm{e}(v_i)\) strongly in \(\left( L^2(\Omega ) \right) ^{d \times d}\), where \(v_i\) is a solution of (3a).

Proof

We consider again \(f_i \in \left( H^1(\Omega )\right) ^d\) such that \(f_i=w_i\) on \(\partial \Omega _D\). We are going to test (10) with \({\tilde{v}}_h = u_{i,h} - \pi _h f_i\) so that \({\tilde{v}}_h \in U_{0,h}\). One thus has

$$\begin{aligned} \begin{aligned}&\int _ {\Omega } (a_h(\alpha _{i,h}) + \eta _\ell ) \mathbb {C}\textrm{e}_h(u_h) \cdot \nabla _h \tilde{v}_h dx \\&= \sum _{F \in \mathcal {F}^i_h} \int _F n \cdot \left( \{(a_h(\alpha _ {i,h}) + \eta _\ell )\sigma _h(u_ {i,h}) \}_F \cdot [\tilde{v}_h]_F\right. \\&\quad \left. - \{(a_h(\alpha _{i,h}) + \eta _\ell ) \sigma _h(\tilde{v}_h) \}_F \cdot [u_{i,h}]_F \right) dS \\&\quad - \sum _ {F \in \mathcal {F}^i_h} \frac{\zeta \gamma _F}{h_F} \int _F [u_{i,h}]_F \cdot [\tilde{v}_h]_F dS, \end{aligned} \end{aligned}$$

Using the strong convergence in \(u_{i,h}\) and \(\alpha _{i,h}\) in the right-hand side gives 0 but it also ensures that the quadratic term in \(\textrm{e}_h(u_{i,h})\) in the left-hand side has a limit when \(h \rightarrow 0\). Thus \(e_h(u_{i,h}) \rightarrow e(v_i)\) strongly in \(\left( L^2(\Omega )\right) ^{d\times d}\), when \(h \rightarrow 0\). \(\square \)

Lemma 4

\((v_i,\beta _i)\) is a solution of (3b).

Proof

Let \(\varphi \in \mathcal {C} ^\infty _c(\Omega )\), \(\varphi \ge 0 \). We are going to test (11) with \(\beta _h = \pi _h + \alpha _{i,h}\). One thus has

$$\begin{aligned} \mathcal {A}_h(u_{i,h}; \alpha _ {i,h}, \pi _h \varphi ) \ge f(u_{i,h}; \pi _h \varphi _h). \end{aligned}$$
(13)

Owing to the weak convergence of \(\nabla _h \alpha _{i,h}\), one has

$$\begin{aligned}{} & {} \int _{\Omega } \textrm{e}(v_i) : \mathbb {C} : \textrm{e}(v_i) (\beta _i-1) {\varphi } dx \nonumber \\{} & {} \quad + \frac{G_c}{c_w} \int _{\Omega }{ \left( 2\ell \nabla \beta _i \cdot {\nabla \varphi } + \frac{\varphi }{\ell }\right) dx \ge } 0. \end{aligned}$$
(14)

Therefore, for any \(\beta \in K_i\),

$$\begin{aligned}{} & {} \int _{\Omega } \textrm{e}(v_i) : \mathbb {C} : \textrm{e}(v_i) (\beta _i-1) (\beta - \beta _i) dx \nonumber \\{} & {} \quad + \frac{G_c}{c_w} \int _ {\Omega } { \left( 2\ell \nabla \beta _i \cdot (\beta - \beta _i) + \frac{\beta - \beta _i}{\ell }\right) dx \ge } 0.\nonumber \\ \end{aligned}$$
(15)

Lemma 5

\(\nabla _h \alpha _{i,h} \rightarrow \nabla \beta _i\) strongly in \(\left( L^2(\Omega )\right) ^d\), where \(\beta _i\) is the solution of (3b).

Proof

Because of the weak convergence of \(\nabla _h \alpha _{i,h}\) towards \(\nabla \beta _i\), one has

$$\begin{aligned} \Vert \nabla \beta _i \Vert _{L^2 (\Omega )} \le \liminf _{h \rightarrow 0} \Vert \nabla _h \alpha _{i,h} \Vert _ {L^2(\Omega )}. \end{aligned}$$
(16)

Let us test (11) with \(\beta _h = \pi _h \beta _i\). One has

$$\begin{aligned}{} & {} f(u_{i,h}; \beta _h - \alpha _{i,h}) + \mathcal {A}_h(u_ {i,h}; \alpha _{i,h}, \alpha _{i,h})\nonumber \\{} & {} \quad \le \mathcal {A}_h(u_{i,h}; \alpha _{i,h},\beta _h). \end{aligned}$$
(17)

Because of the weak convergence of \(\nabla _h \alpha _{i,h}\),

$$\begin{aligned} 0 + \limsup _{h \rightarrow 0} \mathcal {A}_h (u_{i,h}; \alpha _{i,h}, \alpha _ {i,h})\le & {} \int _\Omega \mathbb {C} \textrm{e}(v_i) \cdot \textrm{e}(v_i) \beta _i^2 dx \nonumber \\{} & {} + \frac{2G_c\ell }{c_w} \Vert \nabla \beta _i \Vert _{L^2(\Omega )}^2, \nonumber \\ \end{aligned}$$
(18)

Due to the strong convergence of \(\alpha _{i,h}\) towards \(\beta _i\), one finally gets

$$\begin{aligned} \limsup _{h \rightarrow 0} \frac{2G_c\ell }{c_w} \Vert \nabla _h \alpha _{i,h} \Vert ^2_ {L^2(\Omega )} \le \frac{2G_c\ell }{c_w} \Vert \nabla \beta _i \Vert ^2_{L^2(\Omega )}. \end{aligned}$$
(19)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marazzato, F., Bourdin, B. A DG/CR discretization for the variational phase-field approach to fracture. Comput Mech 72, 693–705 (2023). https://doi.org/10.1007/s00466-023-02294-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-023-02294-y

Keywords

Navigation