Skip to main content
Log in

Hierarchically refined isogeometric analysis of trimmed shells

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This work focuses on the study of several computational challenges arising when trimmed surfaces are directly employed for the isogeometric analysis of Kirchhoff–Love shells. To cope with these issues and to resolve mechanical and/or geometrical features of interest, we exploit the local refinement capabilities of hierarchical B-splines. In particular, we show numerically that local refinement is suited to effectively impose Dirichlet-type boundary conditions in a weak sense, where this easily allows to overcome the issue of over-constraining of trimmed elements. Moreover, we highlight how refinement can alleviate the spurious coupling stemming from disjoint supports of basis functions in the presence of “small” trimmed geometrical features such as thin holes. These phenomena are particularly pronounced in surface models defined by complex trimming patterns and with details at different scales. In this contribution we focus our effort on the analysis of single-patch geometries, where we show through several numerical examples the benefits and computational efficiency of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. www.rhino3d.com.

References

  1. Antolin P, Buffa A, Martinelli M (2019) Isogeometric analysis on V-reps: first results. Comput Methods Appl Mech Eng 355:976–1002

    Article  MathSciNet  Google Scholar 

  2. Apprich C, Höllig K, Hörner J, Keller A, Nava Yazdani E (2015) Finite element approximation with hierarchical B-splines. In: Boissonnat J-D, Cohen A, Gibaru O, Gout C, Lyche T, Mazure M-L, Schumaker LL (eds) Curves and surfaces. Springer, Cham, pp 1–15

    Google Scholar 

  3. Babuška I (1973) The finite element method with penalty. Math. Comput. 27(122):221–228

    Article  MathSciNet  Google Scholar 

  4. Bazilevs Y, Calo V, Cottrell J, Evans J, Hughes TJR, Lipton S, Scott M, Sederberg T (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5): 229 – 263 (Computational Geometry and Analysis)

  5. Breitenberger M, Apostolatos A, Philipp B, Wüchner R, Bletzinger K-U (2015) Analysis in computer aided design: nonlinear isogeometric B-Rep analysis of shell structures. Comput Methods Appl Mech Eng 284:401–457 (Isogeometric Analysis Special Issue)

  6. Carraturo M, Giannelli C, Reali A, Vázquez R (2019) Suitably graded THB-spline refinement and coarsening: towards an adaptive isogeometric analysis of additive manufacturing processes. Comput Methods Appl Mech Eng 348:660–679

    Article  MathSciNet  Google Scholar 

  7. Casquero H, Liu L, Zhang Y, Reali A, Kiendl J, Gómez H (2017) Arbitrary-degree T-splines for isogeometric analysis of fully nonlinear Kirchhoff–Love shells. Comput-Aid Des 82:140–153 (Isogeometric Design and Analysis)

  8. Ciarlet P (2002) The finite element method for elliptic problems. Society for Industrial and Applied Mathematics

  9. Cirak F (2006) Subdivision shells. In: Motasoares CA, Martins JAC, Rodrigues HC, Ambrósio JAC, Pina CAB, Motasoares CM, Pereira EBR, Folgado J (eds) III European conference on computational mechanics. Springer, Dordrecht, pp 395–395

    Chapter  Google Scholar 

  10. Coradello L, Antolin P, Vázquez R, Buffa A (2020) Adaptive isogeometric analysis on two-dimensional trimmed domains based on a hierarchical approach. Comput Methods Appl Mech Eng 364:112925

    Article  MathSciNet  Google Scholar 

  11. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Wiley, Chichester

    Book  Google Scholar 

  12. da Veiga LB, Buffa A, Sangalli G, Vázquez R (2014) Mathematical analysis of variational isogeometric methods. Acta Numerica 23:157–287

    Article  MathSciNet  Google Scholar 

  13. D’Angella D, Kollmannsberger S, Rank E, Reali A (2018) Multi-level Bézier extraction for hierarchical local refinement of isogeometric analysis. Comput Methods Appl Mech Eng

  14. de Prenter F, Lehrenfeld C, Massing A (2018) A note on the stability parameter in Nitsche’s method for unfitted boundary value problems. Comput Math Appl 75(12):4322–4336

    Article  MathSciNet  Google Scholar 

  15. Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aid Geom Des 30(3):331–356

    Article  MathSciNet  Google Scholar 

  16. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45–48):3768–3782

    Article  MathSciNet  Google Scholar 

  17. Düster A, Rank E, Szab B (2017) The p-version of the finite element and finite cell methods. In: Encyclopedia of computational mechanics second edition

  18. Forsey DR, Bartels RH (1988) Hierarchical B-spline refinement. In: Proceedings of the 15th annual conference on computer graphics and interactive techniques, SIGGRAPH ’88. ACM, New York, pp 205–212

  19. Garau EM, Vázquez R (2018) Algorithms for the implementation of adaptive isogeometric methods using hierarchical B-splines. Appl Numer Math 123:58–87

    Article  MathSciNet  Google Scholar 

  20. Giannelli C, Jüttler B, Speleers H (2012) THB-splines: the truncated basis for hierarchical splines. Comput Aid Geom Des 29(7):485–498

    Article  MathSciNet  Google Scholar 

  21. Giannelli C, Jüttler B, Kleiss SK, Mantzaflaris A, Simeon B, Špeh J (2016) THB-splines: an effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis. Comput Methods Appl Mech Eng 299:337–365

    Article  MathSciNet  Google Scholar 

  22. Gómez H, Calo VM, Bazilevs Y, Hughes TJR (2008) Isogeometric analysis of the Cahn–Hilliard phase-field model. Comput Methods Appl Mech Eng 197(49):4333–4352

    Article  MathSciNet  Google Scholar 

  23. Greiner G, Hormann K (1997) Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines. In: Surface fitting and multiresolution methods. Vanderbilt University Press, pp 163–172

  24. Guo Y, Ruess M (2015) Weak Dirichlet boundary conditions for trimmed thin isogeometric shells. Comput Math Appl 70(7):1425–1440 (High-Order Finite Element and Isogeometric Methods)

  25. Guo Y, Heller J, Hughes TJR, Ruess M, Schillinger D (2018) Variationally consistent isogeometric analysis of trimmed thin shells at finite deformations, based on the step exchange format. Comput Methods Appl Mech Eng 336:39–79

    Article  MathSciNet  Google Scholar 

  26. Herrema AJ, Johnson EL, Proserpio D, Wu MC, Kiendl J, Hsu M-C (2019) Penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches with application to composite wind turbine blades. Comput Methods Appl Mech Eng 346:810–840

    Article  MathSciNet  Google Scholar 

  27. Höllig K, (2003) Finite element methods with B-splines, volume 26 of Frontiers in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

  28. Höllig K, Hörner J, Hoffacker A (2012) Finite element analysis with B-splines: weighted and isogeometric methods. In: Boissonnat J-D, Chenin P, Cohen A, Gout C, Lyche T, Mazure M-L, Schumaker L (eds) Curves and surfaces. Springer, Berlin, pp 330–350

    Chapter  Google Scholar 

  29. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    Article  MathSciNet  Google Scholar 

  30. ISO 10303-11:1994. Industrial automation systems and integration—Product data representation and exchange. Standard, International Organization for Standardization, Geneva, CH, March 1994

  31. Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198(49):3902–3914

    Article  MathSciNet  Google Scholar 

  32. Kiendl J, Hsu M-C, Wu MC, Reali A (2015) Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput Methods Appl Mech Eng 291:280–303

    Article  MathSciNet  Google Scholar 

  33. Kiendl J, Ambati M, Lorenzis L.D, Gomez H, Reali A (2016) Phase-field description of brittle fracture in plates and shells. Comput Methods Appl Mech Eng 312:374–394 (Phase Field Approaches to Fracture)

  34. Kraft R (1997) Adaptive and linearly independent multilevel B-splines. In: Surface Fitting and multiresolution methods. Vanderbilt University Press

  35. Kudela L, Zander N, Bog T, Kollmannsberger S, Rank E (2015) Efficient and accurate numerical quadrature for immersed boundary methods. Advanced modeling and simulation in engineering sciences 2(1):10

    Article  Google Scholar 

  36. Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: accurately integrating discontinuous functions in 3d. Comput Methods Appl Mech Eng

  37. Leonetti L, Magisano D, Madeo A, Garcea G, Kiendl J, Reali A (2019) A simplified Kirchhoff–Love large deformation model for elastic shells and its effective isogeometric formulation. Comput Methods Appl Mech Eng 354:369–396

    Article  MathSciNet  Google Scholar 

  38. Liu L, Zhang Y, Hughes TJR, Scott MA, Sederberg TW (2014) Volumetric t-spline construction using boolean operations. Eng Comput 30(4):425–439

    Article  Google Scholar 

  39. Liu L, Zhang YJ, Wei X (2015) Weighted T-splines with application in reparameterizing trimmed nurbs surfaces. Comput Methods Appl Mech Eng 295:108–126

    Article  MathSciNet  Google Scholar 

  40. Lorenzo G, Scott M, Tew K, Hughes TJR, Gómez H (2017) Hierarchically refined and coarsened splines for moving interface problems, with particular application to phase-field models of prostate tumor growth. Comput Methods Appl Mech Eng 319:515–548

    Article  MathSciNet  Google Scholar 

  41. Marussig B, Hughes TJR (2018) A review of trimming in isogeometric analysis: challenges, data exchange and simulation aspects. Arch Comput Methods Eng 25(4):1059–1127

    Article  MathSciNet  Google Scholar 

  42. Rank E, Kollmannsberger S, Sorger C, Düster A (2011-10) Shell finite cell method: a high order fictitious domain approach for thin-walled structures. Comput Methods Appl Mech Eng 200(45-46):3200–3209

  43. Reali A, Gómez H (2015) An isogeometric collocation approach for Bernoulli-Euler beams and Kirchhoff plates. Comput Methods Appl Mech Eng 284:623–636 (Isogeometric Analysis Special Issue)

  44. Russell J, Cohn R (2012) Open cascade technology

  45. Schillinger D, Dedé L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput Methods Appl Mech Eng 249–252:116–150 (Higher Order Finite Element and Isogeometric Methods)

  46. Schmidt R, Kiendl J, Bletzinger K-U, Wüchner R (2010) Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis. Comput Vis Sci 13(7):315–330

    Article  Google Scholar 

  47. Schmidt R, Wüchner R, Bletzinger K-U (2012) Isogeometric analysis of trimmed NURBS geometries. Comput Methods Appl Mech Eng 241–244:93–111

    Article  MathSciNet  Google Scholar 

  48. Special Issue on Isogeometric Analysis: Progress and Challenges (2017) Computer methods in applied mechanics and engineering. Elsevier, Amsterdam

  49. Utku M, Carey G (1982) Boundary penalty techniques. Comput Methods Appl Mech Eng 30(1):103–118

    Article  MathSciNet  Google Scholar 

  50. Vuong AV, Giannelli C, Jüttler B, Simeon B (2011) A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput Methods Appl Mech Eng 200(49–52):3554–3567

    Article  MathSciNet  Google Scholar 

  51. Wassermann B, Kollmannsberger S, Bog T, Rank E (2016) From geometric design to numerical analysis: a direct approach using the finite cell method on constructive solid geometry. Comput Math Appl 74(7):1703–1726 (High-Order Finite Element and Isogeometric Methods)

Download references

Acknowledgements

The author L. Coradello gratefully acknowledges the support of the European Research Council, via the ERC AdG project CHANGE (No. 694515). A. Reali has been partially supported by the MIUR-PRIN project XFAST-SIMS (No. 20173C478N). The authors D. D’Angella and A. Reali acknowledge the support of the TUM Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under Grant agreement number 291763. D. D’Angella acknowledges the support of the Deutsche Forschungsgemeinschaft in the Priority Program 1748 “Reliable simulation techniques in solid mechanics. Development of non-standard discretization methods, mechanical and mathematical analysis” under the project RA624/27-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Coradello.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Luca Coradello and Davide D’Angella contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coradello, L., D’Angella, D., Carraturo, M. et al. Hierarchically refined isogeometric analysis of trimmed shells. Comput Mech 66, 431–447 (2020). https://doi.org/10.1007/s00466-020-01858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-020-01858-6

Keywords

Navigation