Skip to main content
Log in

Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper we propose different multi-field variational formulations for electrostatics and magnetostatics, which can provide optimal discrete approximation of any particular vector field. The proposed formulations are constructed by appealing to mechanics point of view amenable to using general constitutive equations, which is quite different from electrostatics and magnetostatics formulations typical of physics and electrical engineering focusing on the corresponding global form suitable only for linear case. In particular, the formulations we propose can be combined with mixed discrete approximations that can ensure the continuity of tangential component of electric or magnetic field and normal component of electric displacement and magnetic flux even for low order interpolations. The choice of this kind is quite different from currently favorite choice of high order finite element interpolations used for coupling electromagnetism with mechanics. The discrete approximation is based upon Whitney’s interpolations representing the vector fields in terms of corresponding differential forms, with electric and magnetic fields as one-form and electric displacement and magnetic flux as two-form. The implementation of interpolations of this kind is made for 3D tetrahedron elements with non-standard approximation parameters defined not only at vertices (for zero-form), but at edges (for one-form) and at facets (for two-form). The results of several numerical simulations are presented to illustrate the performance of different formulations proposed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Albanese R, Rubinacci G (1997) Finite element methods for the solution of 3d eddy current problems. In: Advances in imaging and electron physics, vol 102, pp 1–86. Elsevier

  2. Alotto P, Freschi F, Repetto M, Rosso C (2013) The cell method for electrical engineering and multiphysics problems: an introduction, vol 230. Springer, Berlin

    MATH  Google Scholar 

  3. Angoshtari A, Shojaei MF, Yavari A (2017) Compatible-strain mixed finite element methods for 2d compressible nonlinear elasticity. Comput Methods Appl Mech Eng 313:596–631

    MathSciNet  Google Scholar 

  4. Arnold DN, Falk RS, Winther R (2006) Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15:1–155

    MathSciNet  MATH  Google Scholar 

  5. Balanis CA (1999) Advanced engineering electromagnetics. Wiley, Hoboken

    Google Scholar 

  6. Bamberg P, Sternberg S (1991) A course in mathematics for students of physics, vol 2. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  7. Bochev PB, Robinson AC (2002) Matching algorithms with physics: exact sequences of finite element spaces. Collected Lectures on Preservation of Stability Under Discretization, pp 145–166

  8. Bossavit A (1988) A rationale for ‘edge-elements’ in 3-d fields computations. IEEE Trans Magn 24(1):74–79

    MathSciNet  Google Scholar 

  9. Bossavit A (1988) Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism. IEE Proc 135(8):493–500

    Google Scholar 

  10. Bossavit A (2010) Discrete magneto-elasticity: a geometrical approach. IEEE Trans Magn 46(8):3485–3491

    Google Scholar 

  11. Desbrun M, Kanso E, Tong Y (2008) Discrete differential forms for computational modeling. In: Discrete differential geometry, pp 287–324. Springer

  12. Dular P, Geuzaine C (1997) Getdp: a general environment for the treatment of discrete problems

  13. Dular P, Hody J-Y, Nicolet A, Genon A, Legros W (1994) Mixed finite elements associated with a collection of tetrahedra, hexahedra and prisms. IEEE Trans Magn 30(5):2980–2983

    Google Scholar 

  14. Felippa CA, Park KC, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24–25):3247–3270

    MATH  Google Scholar 

  15. Gil AJ, Ortigosa R (2016) A new framework for large strain electromechanics based on convex multi-variable strain energies: variational formulation and material characterisation. Comput Methods Appl Mech Eng 302:293–328

    MathSciNet  MATH  Google Scholar 

  16. Golias NA, Tsiboukis TD, Bossavit A (1994) Constitutive inconsistency: rigorous solution of maxwell equations based on a dual approach. IEEE Trans Magn 30(5):3586–3589

    Google Scholar 

  17. Gradinaru V, Hiptmair R (1999) Whitney elements on pyramids. Electron Trans Numer Anal 8:154–168

    MathSciNet  MATH  Google Scholar 

  18. Hale HW (1961) A logic for identifying the trees of a graph. Trans Am Inst Electr Eng Part III Power Apparatus Syst 80(3):195–197

    Google Scholar 

  19. Hammond P (2013) Electromagnetism for engineers: an introductory course. Elsevier, Amsterdam

    Google Scholar 

  20. Hammond P, Penman J (1976) Calculation of inductance and capacitance by means of dual energy principles. In: Proceedings of the Institution of Electrical Engineers, vol 123, pp 554–559. IET

    Google Scholar 

  21. Hammond P, Tsiboukis TD (1983) Dual finite-element calculations for static electric and magnetic fields. IEE Proc A (Phys Sci Measurement Instrum Manag Educ Rev) 130(3):105–111

    Google Scholar 

  22. Ibrahimbegovic A (2009) Nonlinear solid mechanics: theoretical formulations and finite element solution methods, vol 160. Springer, Dordrecht

    MATH  Google Scholar 

  23. Jackson JD (1999) Classical electrodynamics. Wiley, New York

    MATH  Google Scholar 

  24. Kameari A (1989) Three dimensional eddy current calculation using edge elements for magnetic vector potential. In: Applied electromagnetics in materials, pp 225–236. Elsevier

  25. Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part I: implicit partitioned algorithm, nonlinear stability proof and validation examples. Comput Mech 47(3):305–323

    MathSciNet  MATH  Google Scholar 

  26. Kassiotis C, Ibrahimbegovic A, Niekamp R, Matthies HG (2011) Nonlinear fluid–structure interaction problem. Part II: space discretization, implementation aspects, nested parallelization and application examples. Comput Mech 47(3):335–357

    MathSciNet  MATH  Google Scholar 

  27. Keip Marc-André, Steinmann Paul, Schröder Jörg (2014) Two-scale computational homogenization of electro-elasticity at finite strains. Comput Methods Appl Mech Eng 278:62–79

    MathSciNet  MATH  Google Scholar 

  28. Ladevèze P, Pelle J-P (2005) Mastering calculations in linear and nonlinear mechanics, vol 171. Springer, New York

    MATH  Google Scholar 

  29. Macneal RH, Harder Robert L (1985) A proposed standard set of problems to test finite element accuracy. Finite Elem Anal Des 1(1):3–20

    Google Scholar 

  30. Manges J, Cendes Z (1996) Generation of tangential vector finite elements. Int Compumag Soc Newsl 3(1):4–10

    Google Scholar 

  31. Mitchell BS (2004) An introduction to materials engineering and science for chemical and materials engineers. Wiley, Hoboken

    Google Scholar 

  32. Moreno-Navarro P, Ibrahimbegovic A, Pérez-Aparicio JL (2017) Plasticity coupled with thermo-electric fields: thermodynamics framework and finite element method computations. Comput Methods Appl Mech Eng 315:50–72

    MathSciNet  Google Scholar 

  33. Moreno-Navarro P, Ibrahimbegovic A, Pérez-Aparicio JL (2018) Linear elastic mechanical system interacting with coupled thermo-electro-magnetic fields. Coupled Syst Mech 7(1):5–25

    Google Scholar 

  34. Nédélec J-C (1980) Mixed finite elements in \(\mathbb{R}^3\). Numer Math 35(3):315–341

    MathSciNet  MATH  Google Scholar 

  35. Penman J, Fraser J (1982) Complementary and dual energy finite element principles in magnetostatics. IEEE Trans Magn 18(2):319–324

    Google Scholar 

  36. Razek A (1995) Computation of 3d electrostatic local fields and forces using complementarity of dual formulations. Application for capacitance and torque calculations in micromotors

  37. Ren Z (1995) A 3d vector potential formulation using edge element for electrostatic field computation. IEEE Trans Magn 31(3):1520–1523

    Google Scholar 

  38. Ren Z (2009) On the complementarity of dual formulations on dual meshes. IEEE Trans Magn 45(3):1284–1287

    Google Scholar 

  39. Repetto M, Trevisan F (2004) Global formulation of 3d magnetostatics using flux and gauged potentials. Int J Numer Meth Eng 60(4):755–772

    MathSciNet  MATH  Google Scholar 

  40. Schröder J, Keip M-A (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50(2):229–244

    MathSciNet  MATH  Google Scholar 

  41. Stark S, Semenov AS, Balke H (2015) On the boundary conditions for the vector potential formulation in electrostatics. Int J Numer Meth Eng 102(11):1704–1732

    MathSciNet  MATH  Google Scholar 

  42. Taylor RL (2012) Feap–a finite element analysis program. Version 8.4 Theory Manual

  43. Tonti E (2013) The mathematical structure of classical and relativistic physics. Springer, New York

    MATH  Google Scholar 

  44. Vogel F, Bustamante R, Steinmann P (2012) On some mixed variational principles in electro-elastostatics. Int J Nonlinear Mech 47(2):341–354

    Google Scholar 

  45. Wang J-S, Ida N (1993) Curvilinear and higher order ‘edge’ finite elements in electromagnetic field computation. IEEE Trans Magn 29(2):1491–1494

    Google Scholar 

  46. Webb JP, Forgahani B (1993) Hierarchal scalar and vector tetrahedra. IEEE Trans Magn 29(2):1495–1498

    Google Scholar 

  47. Yioultsis TV, Tsiboukis TD (1996) The mystery and magic of Whitney elements—an insight in their properties and construction. ICS Newsl 3:1389–1392

    Google Scholar 

  48. Zienkiewicz OC, Taylor RL (1977) The finite element method, vol 36. McGraw-Hill, London

    Google Scholar 

Download references

Acknowledgements

This work was supported jointly by Haut-de-France Region (CR Picardie) (120-2015-RDISTRUCT-000010 and RDISTRUCT-000010) and EU funding (FEDER) for Chaire-de-Mécanique (120-2015-RDISTRUCTF-000010 and RDISTRUCTI-000004). AI was also supported by IUF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Ibrahimbegovic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Navarro, P., Ibrahimbegovic, A. & Ospina, A. Multi-field variational formulations and mixed finite element approximations for electrostatics and magnetostatics. Comput Mech 65, 41–59 (2020). https://doi.org/10.1007/s00466-019-01751-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01751-x

Keywords

Navigation