Skip to main content
Log in

Some applications of compressed sensing in computational mechanics: model order reduction, manifold learning, data-driven applications and nonlinear dimensionality reduction

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Compressed sensing is a signal compression technique with very remarkable properties. Among them, maybe the most salient one is its ability of overcoming the Shannon–Nyquist sampling theorem. In other words, it is able to reconstruct a signal at less than 2Q samplings per second, where Q stands for the highest frequency content of the signal. This property has, however, important applications in the field of computational mechanics, as we analyze in this paper. We consider a wide variety of applications, such as model order reduction, manifold learning, data-driven applications and nonlinear dimensionality reduction. Examples are provided for all of them that show the potentialities of compressed sensing in terms of CPU savings in the field of computational mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newtonian Fluid Mech 139:153–176

    Article  Google Scholar 

  2. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144:98–121

    Article  Google Scholar 

  3. Amsallem D, Farhat C (2008) An interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J 46:1803–1813

    Article  Google Scholar 

  4. Benner P, Gugercin S, Willcox K (2015) A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev 57(4):483–531

    Article  MathSciNet  Google Scholar 

  5. Bognet B, Bordeu F, Chinesta F, Leygue A, Poitou A (2012) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng 201–204:1–12. https://doi.org/10.1016/j.cma.2011.08.025

    Article  MATH  Google Scholar 

  6. Borzacchiello D, Aguado JV, Chinesta F (2017) Non-intrusive sparse subspace learning for parametrized problems. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-017-9241-4

    Article  Google Scholar 

  7. Borzacchiello D, Aguado JV, Chinesta F (2017) Reduced order modelling for efficient numerical optimisation of a hot-wall chemical vapour deposition reactor. Int J Numer Methods Heat Fluid Flow 27(7):1602–1622. https://doi.org/10.1108/HFF-04-2016-0153

    Article  Google Scholar 

  8. Breitkopf P, Naceur H, Rassineux A, Villon P (2005) Moving least squares response surface approximation: formulation and metal forming applications. Comput Struct 83(17–18):1411–1428

    Article  Google Scholar 

  9. Brunton SL, Proctor JL, Kutz JN (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1517384113

    Article  MATH  Google Scholar 

  10. Bungartz HJ, Griebel M (2004) Sparse grids. Acta Numer 13:147–269

    Article  MathSciNet  Google Scholar 

  11. Chinesta F, Ammar A, Cueto E (2010) Recent advances in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350

    Article  MathSciNet  Google Scholar 

  12. Chinesta F, Cueto E (2014) PGD-based modeling of materials, structures and processes. Springer, Berlin

    Book  Google Scholar 

  13. Chinesta F, Huerta A, Rozza G, Willcox K (2017) Model reduction methods. Encyclopedia of computational mechanics, 2nd edn. Wiley, Hoboken

    Google Scholar 

  14. Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18:395–404

    Article  Google Scholar 

  15. Chinesta F, Leygue A, Bordeu F, Aguado J, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) PGD-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20(1):31–59. https://doi.org/10.1007/s11831-013-9080-x

    Article  MathSciNet  MATH  Google Scholar 

  16. Cueto E, González D, Alfaro I (2016) Proper generalized decompositions: an introduction to computer implementation with Matlab. SpringerBriefs in applied sciences and technology. Springer, Berlin

    Book  Google Scholar 

  17. Everson R, Sirovich L (1995) Karhunen-loève procedure for gappy data. J Opt Soc Am A 12(8):1657–1664. https://doi.org/10.1364/JOSAA.12.001657

    Article  Google Scholar 

  18. Farhat C, Chapman T, Avery P (2015) Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models. Int J Numer Methods Eng 102(5):1077–1110. https://doi.org/10.1002/nme.4820

    Article  MathSciNet  MATH  Google Scholar 

  19. González D, Aguado JV, Cueto E, Abisset-Chavanne E, Chinesta F (2016) kPCA-based parametric solutions within the PGD framework. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-016-9173-4

    Article  MATH  Google Scholar 

  20. González D, Chinesta F, Cueto E (2019) Learning corrections for hyperelastic models from data. Front Mater. https://doi.org/10.3389/fmats.2019.00014

    Article  Google Scholar 

  21. Ibanez R, Abisset-Chavanne E, Aguado JV, Gonzalez D, Cueto E, Chinesta F (2018) A manifold learning approach to data-driven computational elasticity and inelasticity. Arch Comput Methods Eng 25(1):47–57

    Article  MathSciNet  Google Scholar 

  22. Ibañez R, Abisset-Chavanne E, Ammar A, González D, Cueto E, Huerta A, Duval JL, Chinesta F (2018) A multi-dimensional data-driven sparse identification technique: the sparse proper generalized decomposition. Complexity. https://doi.org/10.1155/2018/5608286

    Article  MATH  Google Scholar 

  23. Ibañez R, Abisset-Chavanne E, Gonzalez D, Duval J, Cueto E, Chinesta F (2018) Hybrid constitutive modeling: Data-driven learning of corrections to plasticity models. Int J Mater Form. https://doi.org/10.1007/s12289-018-1448-x

    Article  MATH  Google Scholar 

  24. Ibañez R, Borzacchiello D, Aguado JV, Abisset-Chavanne E, Cueto E, Ladeveze P, Chinesta F (2017) Data-driven non-linear elasticity: constitutive manifold construction and problem discretization. Comput Mech 60(5):813–826. https://doi.org/10.1007/s00466-017-1440-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaiser E, Kutz JN, Brunton SL (2018) Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc R Soc Lond A Math Phys Eng Sci 474(2219):20180335. https://doi.org/10.1098/rspa.2018.0335

    Article  MathSciNet  Google Scholar 

  26. Kutz JN (2013) Data-driven modeling and scientific computation. Methods for complex systems and big-data. Oxford University Press, Oxford

    MATH  Google Scholar 

  27. Ladeveze P (1989) The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables. Comptes Rendus Académie des Sciences Paris 309:1095–1099

    MATH  Google Scholar 

  28. Ladeveze P (1999) Nonlinear computational structural mechanics. Springer, New York

    Book  Google Scholar 

  29. Lee J, Verleysen M (2007) Nonlinear dimensionality reduction. Springer, New York

    Book  Google Scholar 

  30. Leon A, Barasinski A, Abisset-Chavanne E, Cueto E, Chinesta F (2018) Wavelet-based multiscale proper generalized decomposition. Comptes Rendus Academie de Sciences - Mécanique 346(7):485–500

    Article  Google Scholar 

  31. Lopez E, Gonzalez D, Aguado JV, Abisset-Chavanne E, Cueto E, Binetruy C, Chinesta F (2016) A manifold learning approach for integrated computational materials engineering. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-016-9172-5

    Article  MATH  Google Scholar 

  32. Maaten Lvd, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(1):2579–2605

    MATH  Google Scholar 

  33. Mangan NM, Brunton SL, Proctor JL, Kutz JN (2016) Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans Mol Biol Multi-Scale Commun 2(1):52–63. https://doi.org/10.1109/TMBMC.2016.2633265

    Article  Google Scholar 

  34. Meng L, Breitkopf P, Le Quilliec G, Raghavan B, Villon P (2018) Nonlinear shape-manifold learning approach: concepts, tools and applications. Arch Comput Methods Eng 25(1):1–21

    Article  MathSciNet  Google Scholar 

  35. Millán D, Arroyo M (2013) Nonlinear manifold learning for model reduction in finite elastodynamics. Comput Methods Appl Mech Eng 261–262:118–131. https://doi.org/10.1016/j.cma.2013.04.007

    Article  MathSciNet  MATH  Google Scholar 

  36. Nouy A (2010) A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput Methods Appl Mech Eng 199(23–24):1603–1626. https://doi.org/10.1016/j.cma.2010.01.009

    Article  MathSciNet  MATH  Google Scholar 

  37. Patera A, Rozza G (2007) Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations. Tech. rep., MIT Pappalardo Monographs in Mechanical Engineering

  38. Quarteroni A, Rozza G, Manzoni A (2011) Certified reduced basis approximation for parametrized PDE and applications. J Math Ind 1:3

    Article  Google Scholar 

  39. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326. https://doi.org/10.1126/science.290.5500.2323

    Article  Google Scholar 

  40. Rozza G, Huynh D, Patera A (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations—application to transport and continuum mechanics. Arch Comput Methods Eng 15(3):229–275

    Article  MathSciNet  Google Scholar 

  41. Ryckelynck D (2005) A priori hyperreduction method: an adaptive approach. J Comput Phys 202(1):346–366

    Article  MathSciNet  Google Scholar 

  42. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  43. Volkwein S (2001) Model reduction using proper orthogonal decomposition. Tech. rep., Lecture Notes, Institute of Mathematics and Scientific Computing, University of Graz

Download references

Acknowledgements

This work has been supported by the Spanish Ministry of Economy and Competitiveness through Grants Numbers DPI2017-85139-C2-1-R and DPI2015-72365-EXP and by the Regional Government of Aragon and the European Social Fund, research group T24 17R. This project has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 675919.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Cueto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibañez, R., Abisset-Chavanne, E., Cueto, E. et al. Some applications of compressed sensing in computational mechanics: model order reduction, manifold learning, data-driven applications and nonlinear dimensionality reduction. Comput Mech 64, 1259–1271 (2019). https://doi.org/10.1007/s00466-019-01703-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01703-5

Keywords

Navigation