Skip to main content
Log in

Computing pointwise contact between bodies: a class of formulations based on master–master approach

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the context of pointwise contact interaction between bodies, a formulation based on surface-to-surface description (master–master) is employed. This leads to a four-variable local contact problem, which solution is associated with general material points on contact surfaces, where contact mechanical action-reaction are represented. We propose here a methodology that permits, according to necessity, a selective dimension reduction of this local contact problem. Thus, the formulation includes curve-to-curve, point-to-surface, curve-to-surface or other contact descriptions as particular degenerations of the surface-to-surface approach. This is done by assuming convective coordinates in the original local contact problem. An operator for performing the so-called “local contact problem degeneration” is presented. It modifies automatically the dimension of the local contact problem and related requirements for its solution. The proposed method is particularly useful for handling singularity scenarios. It also creates a possibility for representing conformal contact by pointwise actions on a non-uniqueness scenario. We present applications and examples that demonstrate benefits for beam-to-beam contact. Ideas and developments, however, are general and may be applied to other geometries of contacting bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Wriggers P (2002) Computational contact mechanics. Wiley, West Sussex

    MATH  Google Scholar 

  2. Laursen TA (2003) Computational contact and impact mechanics fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin

    MATH  Google Scholar 

  3. Francavilla A, Zienkiewicz OC (1975) A note on numerical computation of elastic contact problems. Int J Numer Methods Eng 9:913–924

    Article  Google Scholar 

  4. Stadter JT, Weiss RO (1979) Analysis of contact through finite element gaps. Comput Struct 10:867–873

    Article  MATH  Google Scholar 

  5. Wriggers P, Rust WT, Reddy BD (2016) A virtual element method for contact. Comput Mech 58(6):1039–1050

    Article  MathSciNet  MATH  Google Scholar 

  6. Wriggers P, Van TV, Stein E (1990) Finite-element-formulation of large deformation impact-contact problems with friction. Comput Struct 37:319–333

    Article  MATH  Google Scholar 

  7. Simo JC, Wriggers P, Taylor RL (1985) A perturbed Lagrangian formulation for the finite element solution of contact problems. Comput Methods Appl Mech Eng 50:163–180

    Article  MathSciNet  MATH  Google Scholar 

  8. Bandeira AA, Pimenta PM, Wriggers P (2004) Numerical derivation of contact mechanics interface laws using a finite Element approach for large 3D deformation. Int J Numer Meth Eng 59:173–195

    Article  MathSciNet  MATH  Google Scholar 

  9. Bathe KJ, Chaudhary AB (1985) A solution method for planar and axisymmetric contact problems. Int J Numer Methods Eng 21:65–88

    Article  MATH  Google Scholar 

  10. Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59(3):315–336

    Article  MathSciNet  MATH  Google Scholar 

  11. Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629

    Article  MATH  Google Scholar 

  12. Fischer KA, Wriggers P (2005) Frictionless 2d contact formulations for finite deformations based on the mortar method. Comput Mech 36:226–244

    Article  MATH  Google Scholar 

  13. De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20

    Article  MathSciNet  MATH  Google Scholar 

  14. Popp A et al (2010) A dual mortar approach for 3D finite deformation contact with consistent linearization. Int J Numer Meth Eng 83:1428–1465

    Article  MathSciNet  MATH  Google Scholar 

  15. Popp A, Gee WM, Wall WA (2011) Finite deformation contact based on a 3D dual mortar and semi-smooth newton approach. In: Zavarise G, Wriggers P (eds) Trends in computational contact mechanics. Springer, Berlin, pp 57–77

    Chapter  Google Scholar 

  16. Wriggers P, Zavarise G (1997) On contact between three-dimensional beams undergoing large deflections. Commun Numer Methods Eng 13:429–438

    Article  MathSciNet  MATH  Google Scholar 

  17. Zavarise G, Wriggers P (2000) Contact with friction between beams in 3-D space. Int J Numer Methods Eng 49:977–1006

    Article  MATH  Google Scholar 

  18. Gay Neto A, Pimenta PM, Wriggers P (2015) Self-contact modeling on beams experiencing loop formation. Comput Mech 55(1):193–208

    Article  MathSciNet  MATH  Google Scholar 

  19. Litewka P, Wriggers P (2002) Frictional contact between 3D beams. Comput Mech 28:26–39

    Article  MATH  Google Scholar 

  20. Litewka P (2007) Hermite polynomial smoothing in beam-to-beam frictional contact. Comput Mech 40:815–826

    Article  MATH  Google Scholar 

  21. Konyukhov A, Schweizerhof K (2010) Geometrically exact covariant approach for contact between curves. Comput Methods Appl Mech Eng 199:2510–2531

    Article  MathSciNet  MATH  Google Scholar 

  22. Konyukhov A, Schweizerhof K (2013) Computational contact mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  23. Gay Neto A, Pimenta PM, Wriggers P (2014) Contact between rolling beams and flat surfaces. Int J Numer Methods Eng 97:683–706

    Article  MathSciNet  MATH  Google Scholar 

  24. Zavarise G, Wriggers P (1998) A segment-to-segment contact strategy. Math Comput Model 28(4–8):497–515

    Article  MATH  Google Scholar 

  25. Zavarise G, de Lorenzis L (2009) A modified node-to-segment algorithm passing the contact patch test. Int J Numer Methods Eng 79:379–416

    Article  MATH  Google Scholar 

  26. Gay Neto A, Pimenta PM, Wriggers P (2016) A Master-surface to master-surface formulation for beam to beam contact. Part I: frictionless interaction. Comput Methods Appl Mech Eng 303:400–429

    Article  MathSciNet  MATH  Google Scholar 

  27. Gay Neto A, Pimenta PM, Wriggers P (2017) A master-surface to master-surface formulation for beam to beam contact. Part II: frictional interaction. Comput Methods Appl Mech Eng 319:146–174

    Article  MathSciNet  MATH  Google Scholar 

  28. Litewka P (2013) Enhanced multiple-point beam-to-beam frictionless contact finite element. Comput Mech 52:1365–1380

    Article  MathSciNet  MATH  Google Scholar 

  29. Litewka P (2015) Frictional beam-to-beam multiple-point contact finite element. Comput Mech 56:243–264

    Article  MathSciNet  MATH  Google Scholar 

  30. Durville D (2012) Contact-friction modeling within elastic beam assemblies: an application to knot tightening. Comput Mech 49:687–707

    Article  MathSciNet  MATH  Google Scholar 

  31. Durville D (2010) Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. Int J Mater Form 3(Suppl. 2):S1241–S1251

    Article  Google Scholar 

  32. Chamekh M, Mani-Aouadi S, Moakher M (2014) Stability of elastic rods with self-contact. Comput Methods Appl Mech Eng 279:227–246

    Article  MathSciNet  MATH  Google Scholar 

  33. Chamekh M, Mani-Aouadi S, Moakher M (2009) Modeling and numerical treatment of elastic rods with frictionless self-contact. Comput Methods Appl Mech Eng 198:3751–3764

    Article  MathSciNet  MATH  Google Scholar 

  34. Meier C, Popp A, Wall WA (2016) A finite element approach for the line-to-line contact interaction of thin beams with arbitrary orientation. Comput Methods Appl Mech Eng 308:377–413

    Article  MathSciNet  Google Scholar 

  35. Meier C, Wall WA, Popp A (2017) A unified approach for beam-to-beam contact. Comput Methods Appl Mech Eng 315(1):972–1010

    Article  MathSciNet  Google Scholar 

  36. Konyukhov A (2015) Geometrically exact theory of contact interactions—applications with various methods FEM and FCM. J Appl Math Phys 3:1022–1031

    Article  Google Scholar 

  37. Gay Neto A, Pimenta PM, Wriggers P (2018) Contact between spheres and general surfaces. Comput Methods Appl Mech Eng 328:686–716

    Article  MathSciNet  Google Scholar 

  38. Gay Neto A (2017) Giraffe user’s manual—generic interface readily accessible for finite elements. Disponivel em http://sites.poli.usp.br/p/alfredo.gay/. Accessed 25 Jan 2019

  39. Gay Neto A (2016) Dynamics of offshore risers using a geometrically-exact beam model with hydrodynamic loads and contact with the seabed. Eng Struct 125:438–454

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) under the Grant 2016/14230-6 and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) under the Grant 304680/2018-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Gay Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Surface parameterization of a beam with super elliptical cross section

Appendix: Surface parameterization of a beam with super elliptical cross section

The here presented parameterization was taken from [26], where the reader finds more detailed explanations. Here it is presented for self-containing of present work.

Let \( {\mathbf{x}} \) represent the beam axis position. Vector \( {\mathbf{a}} \) is orthogonal to \( {\mathbf{x}} \) at each beam cross section and connects the beam axis to the cross-section boundary. It is proposed the following parameterization for a surface \( {\Gamma } \):

$$ {\Gamma }\left( {{\upzeta },{\uptheta }} \right) = {\mathbf{x}}\left( {\upzeta } \right) + {\mathbf{a}}\left( {{\upzeta },{\uptheta }} \right), $$
(59)

where \( {\upzeta } \) describes a convective coordinate along the beam axis direction and \( {\uptheta } \) describes a convective coordinate along circumferential direction in the plane of the cross section. The vector \( {\mathbf{a}}\left( {{\upzeta },{\uptheta }} \right) \) describes the cross-section shape in its local orientation xy, as seen in Fig. 21. We employed a linear interpolation for beam axis, between two extreme nodes located at \( {\mathbf{x}}_{\text{A}} \) and \( {\mathbf{x}}_{\text{B}} \), such that:

$$ {\mathbf{x}}\left( {\upzeta } \right) = \frac{{\left( {1 - {\upzeta }} \right) }}{2}{\mathbf{x}}_{\text{A}} + \frac{{\left( {1 + {\upzeta }} \right) }}{2}{\mathbf{x}}_{\text{B}} , $$
(60)
Fig. 21
figure 21

Parameterization of the beam a axis, b cross section (taken from [26, 27])

Cross-sections are chosen to have super elliptical shapes, described by

$$ \left| {\frac{{\text{x}}}{{\text{a}}}} \right|^{\text{n}} + \left| {\frac{{\text{y}}}{{\text{b}}}} \right|^{\text{n}} = 1, $$
(61)

where \( {\text{a}} \) and \( {\text{b}} \) are semi-axis. The choice for \( {\text{a}} \), \( {\text{b}} \) and the exponent \( {\text{n}} \) makes this a versatile choice to recover circular, elliptical or almost-rectangular cross-sections. Figure 22 shows some examples.

Fig. 22
figure 22

Examples for super elliptical cross sections with a = 2b and a n = 2, b n = 4, c n = 15 (taken from [26])

At reference configuration, one may describe each cross section by:

$$ {\mathbf{a}}^{{\mathbf{r}}} \left( {\uptheta } \right) = \left( {{\text{a}}\phi \left( {\uptheta } \right)\cos {\uptheta },{\text{b}}\phi \left( {\uptheta } \right){\text{sin}}\uptheta} \right), $$
(62)

where

$$ \phi \left( {\uptheta } \right) = \frac{1}{{\sqrt[{\text{n}}]{{\left| {\sin {\uptheta }} \right|^{\text{n}} + \left| {\cos {\uptheta }} \right|^{\text{n}} }}}}. $$
(63)

With that, the final form for \( {\Gamma }\left( {{\upzeta },{\uptheta }} \right) \) is expressed including \( {\mathbf{Q}}_{\text{A}} \) and \( {\mathbf{Q}}_{\text{B}} \) as the rotation tensors for each beam extreme node:

$$ {\Gamma }\left( {{\upzeta },{\uptheta }} \right) = {\text{N}}_{\text{A}} \left( {\upzeta } \right)\left[ {{\mathbf{x}}_{\text{A}} + {\mathbf{Q}}_{\text{A}} {\mathbf{a}}^{{\mathbf{r}}} \left( {\uptheta } \right)} \right] + {\text{N}}_{\text{B}} \left( {\upzeta } \right)\left[ {{\mathbf{x}}_{\text{B}} + {\mathbf{Q}}_{\text{B}} {\mathbf{a}}^{{\mathbf{r}}} \left( {\uptheta } \right)} \right]. $$
(64)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gay Neto, A., Wriggers, P. Computing pointwise contact between bodies: a class of formulations based on master–master approach. Comput Mech 64, 585–609 (2019). https://doi.org/10.1007/s00466-019-01680-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01680-9

Keywords

Navigation