Skip to main content
Log in

Efficient searching in meshfree methods

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Meshfree methods such as the Reproducing Kernel Particle Method and the Element Free Galerkin method have proven to be excellent choices for problems involving complex geometry, evolving topology, and large deformation, owing to their ability to model the problem domain without the constraints imposed on the Finite Element Method (FEM) meshes. However, meshfree methods have an added computational cost over FEM that come from at least two sources: increased cost of shape function evaluation and the determination of adjacency or connectivity. The focus of this paper is to formally address the types of adjacency information that arises in various uses of meshfree methods; a discussion of available techniques for computing the various adjacency graphs; propose a new search algorithm and data structure; and finally compare the memory and run time performance of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Available at https://graphics.stanford.edu/data/3Dscanrep/.

References

  1. Atluri SN, Zhu T (1998) A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22(2):117–127

    Article  MathSciNet  Google Scholar 

  2. Barbieri E, Meo M (2012) A fast object-oriented matlab implementation of the reproducing kernel particle method. Comput Mech 49(5):581–602

    Article  MathSciNet  Google Scholar 

  3. Belytschko T, Liu Y, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  Google Scholar 

  4. Belytschko T, Krongauz Y, Fleming M, Organ D, Liu W (1996) Smoothing and accelerated computations in the element free Galerkin method. J Comput Appl Math 74:111–126

    Article  MathSciNet  Google Scholar 

  5. Bentley JL (1975a) Multidimensional binary search trees used for associative searching. Commun ACM 18(9):509–517

    Article  Google Scholar 

  6. Bentley JL (1975b) A survey of techniques for fixed radius near neighbor searching. Technical report, Stanford Linear Accelerator Center, Stanford, CA, USA

  7. Berg Md, Cheong O, Mv Kreveld, Overmars M (2008) Computational geometry. Springer, Berlin

    Book  Google Scholar 

  8. Cartwright C, Oliveira S, Stewart DE (2006) Parallel support set searches for meshfree methods. SIAM J Sci Comput 28(4):1318–1334

    Article  MathSciNet  Google Scholar 

  9. Cavoretto R, De Rossi A, Perracchione E (2016) Efficient computation of partition of unity interpolants through a block-based searching technique. Comput Math Appl 71(12):2568–2584

    Article  MathSciNet  Google Scholar 

  10. Chartrand G (1985) Introductory graph theory. Dover, New York

    Google Scholar 

  11. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466

    Article  Google Scholar 

  12. Chen JS, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Methods Eng 95(5):387–418

    Article  MathSciNet  Google Scholar 

  13. Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak from in meshfree methods. Comput Mech 23:219–30

    Article  MathSciNet  Google Scholar 

  14. Duarte C, Oden J (1996) An h-p adaptive method using clouds. Comput Methods Appl Mech Eng 139(1–4):237–262

    Article  MathSciNet  Google Scholar 

  15. Fuchs H, Kedem ZM, Naylor BF (1980) On visible surface generation by a priori tree structures. SIGGRAPH Comput Graph 14(3):124–133

    Article  Google Scholar 

  16. Fujimoto A, Iwata K (1985) Accelerated ray tracing. Springer, Tokyo, pp 41–65

    Google Scholar 

  17. Han X, Oliveira S, Stewart D (2000) Finding sets covering a point with application to mesh-free Galerkin methods. SIAM J Comput 30(4):1368–1383

    Article  MathSciNet  Google Scholar 

  18. Karatarakis A, Metsis P, Papadrakakis M (2013) GPU-acceleration of stiffness matrix calculation and efficient initialization of EFG meshless methods. Comput Methods Appl Mech Eng 258:63–80

    Article  MathSciNet  Google Scholar 

  19. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34

    Article  Google Scholar 

  20. Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  21. Li S, Qian D, Wk Liu, Belytschko T (2001) A meshfree contact-detection algorithm. Comput Methods Appl Mech Eng 190:3271–3292

    Article  MathSciNet  Google Scholar 

  22. Liu G (2009) Meshfree methods moving beyond the finite element method. CRC Press, Boca Raton

    Google Scholar 

  23. Liu G, Tu Z (2002) An adaptive procedure based on background cells for meshless methods. Comput Methods Appl Mech Eng 191:1923–1943

    Article  Google Scholar 

  24. Liu W, Jun S, Li S, Adee J, Belytschko T (1995a) Reproducing kernel particle methods for structural dynamics. Int J Numer Methods Eng 38:1655–1679

    Article  MathSciNet  Google Scholar 

  25. Liu W, Jun S, Zhang Y (1995b) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    Article  MathSciNet  Google Scholar 

  26. Onate E, Idelsohn S, Zienkiewicz OC, Taylor RL (1996) A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int J Numer Methods Eng 39(22):3839–3866

    Article  MathSciNet  Google Scholar 

  27. Rubin SM, Whitted T (1980) A 3-dimensional representation for fast rendering of complex scenes. SIGGRAPH Comput Graph 14(3):110–116

    Article  Google Scholar 

  28. Tapia-Fernández S, Romero I, García-Beltrán A (2017) A new approach for the solution of the neighborhood problem in meshfree methods. Engineering with Computers 33:239–247

    Article  Google Scholar 

  29. Wald I, Ize T, Kensler A, Knoll A, Parker SG (2006) Ray tracing animated scenes using coherent grid traversal. ACM Trans Graph 25(3):485–493

    Article  Google Scholar 

  30. Wang D, Zhou Y, Shao S (2016) Efficient implementation of smoothed particle hydrodynamics (SPH) with plane sweep algorithm. Commun Comput Phys 19(3):770–800

    Article  MathSciNet  Google Scholar 

  31. Wendland H (2004) Scattered data approximation, vol 17. Cambridge University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank and acknowledge Dr. Jen Bright for the data provided for the Scarlet Macaw bird skull. The author’s would also like to thank Formerics, LLC for the use of their software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Simkins Jr..

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olliff, J., Alford, B. & Simkins, D.C. Efficient searching in meshfree methods. Comput Mech 62, 1461–1483 (2018). https://doi.org/10.1007/s00466-018-1574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1574-9

Keywords

Navigation