Skip to main content
Log in

A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Butterworth-Heinemann, London

    MATH  Google Scholar 

  2. Strikwerda JC (2004) Finite difference schemes and partial differential equations, 2nd edn. SIAM, Philadelphia

    MATH  Google Scholar 

  3. Raghavan A, Cesnik CES (2007) 3-d elasticity-based modeling of anisotropic piezocomposite transducers for guided wave structural health monitoring. J Vib Acoust 129(6):739–751

    Article  Google Scholar 

  4. Lingyu Y, Bottai-Santoni G, Giurgiutiu V (2010) Shear lag solution for tuning ultrasonic piezoelectric wafer active sensors with applications to lamb wave array imaging. Int J Eng Sci 48(10):848–861

    Article  Google Scholar 

  5. Ahmad ZAB, Vivar-Perez JM, Gabbert U (2013) Semi-analytical finite element method for modeling of lamb wave propagation. CEAS Aeronaut J 4(1):21–33

    Article  Google Scholar 

  6. Datta SK, Shah AH, Bratton RL, Chakraborty T (1988) Wave propagation in laminated composite plates. J Acoust Soc Am 83(6):2020–2026

    Article  Google Scholar 

  7. Marzani A, Viola E, Bartoli I, Scalea FLD, Rizzo P (2008) A semi-analytical finite element formulation for modeling stress wave propagation in axisymmetric damped waveguides. J Sound Vib 318(3):488–505

    Article  Google Scholar 

  8. Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54(3):468–488

    Article  Google Scholar 

  9. Kudela P, Krawczuk M, Ostachowicz W (2007) Wave propagation modelling in 1d structures using spectral finite elements. J Sound Vib 300(1):88–100

    Article  Google Scholar 

  10. Monasse P, Perrier V (1998) Orthonormal wavelet bases adapted for partial differential equations with boundary conditions. SIAM J Math Anal 29(4):1040–1065

    Article  MathSciNet  Google Scholar 

  11. Qian S, Weiss J (1993) Wavelets and the numerical solution of boundary value problems. Appl Math Lett 6(1):47–52

    Article  MathSciNet  Google Scholar 

  12. Li B, Chen X (2014) Wavelet-based numerical analysis: a review and classification. Finite Elem Anal Des 81:14–31

    Article  MathSciNet  Google Scholar 

  13. Patton R, Marks P (1995) The rod finite element, a new type of finite element. In: 36th structures, structural dynamics and materials conference: structures, structural dynamics, and materials and co-located conferences. American Institute of Aeronautics and Astronautics

  14. Patton R, Marks P (1995) Application of the rod wavelet finite element to dynamic systems. In: 36th structures, structural dynamics and materials conference: structures, structural dynamics, and materials and co-located conferences. American Institute of Aeronautics and Astronautics

  15. Ma J, Xue J, Yang S, He Z (2003) A study of the construction and application of a daubechies wavelet-based beam element. Finite Elem Anal Des 39(10):965–975

    Article  Google Scholar 

  16. Chen X, Yang S, Ma J, He Z (2004) The construction of wavelet finite element and its application. Finite Elem Anal Des 40(5):541–554

    Article  Google Scholar 

  17. Zhou Y-H, Zhou J (2008) A modified wavelet approximation of deflections for solving pdes of beams and square thin plates. Finite Elem Anal Des 44(12):773–783

    Article  Google Scholar 

  18. Díaz LA, Martín MT, Vampa V (2009) Daubechies wavelet beam and plate finite elements. Finite Elem Anal Des 45(3):200–209

    Article  MathSciNet  Google Scholar 

  19. Mitra M, Gopalakrishnan S (2005) Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D waveguides. Int J Solids Struct 42(16):4695–4721

    Article  Google Scholar 

  20. Samaratunga D, Jha R, Gopalakrishnan S (2014) Wavelet spectral finite element for wave propagation in shear deformable laminated composite plates. Compos Struct 108:341–353

    Article  Google Scholar 

  21. Burgos RB, Santos MAC, e Silva RR (2013) Deslauriers–Dubuc interpolating wavelet beam finite element. Finite Elem Anal Des 75:71–77

    Article  MathSciNet  Google Scholar 

  22. Xiang JW, Chen XF, He ZJ, Dong HB (2007) The construction of 1d wavelet finite elements for structural analysis. Comput Mech 40(2):325–339

    Article  MathSciNet  Google Scholar 

  23. Zuo H, Yang Z, Chen X, Xie Y, Miao H (2015) Analysis of laminated composite plates using wavelet finite element method and higher-order plate theory. Compos Struct 131:248–258

    Article  Google Scholar 

  24. Zhang X, Chen X, Wang X, He Z (2010) Multivariable finite elements based on b-spline wavelet on the interval for thin plate static and vibration analysis. Finite Elem Anal Des 46(5):416–427

    Article  MathSciNet  Google Scholar 

  25. Theodosiou T, Nastos C, Rekatsinas C, Saravanos D (2014) Finite wavelet domain method for efficient modeling of lamb wave based structural health monitoring. In: EWSHM-7th European workshop on structural health monitoring, Nantes, France

  26. Nastos CV, Theodosiou TC, Rekatsinas CS, Saravanos DA (2015) A finite wavelet domain method for the rapid analysis of transient dynamic response in rods and beams. CMES Comput Model Eng Sci 107(5):379–409

    Google Scholar 

  27. Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  28. Daubechies I (1992) Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol 61. SIAM, Philadelphia

  29. Lin W, Kovvali N, Carin L (2005) Direct algorithm for computation of derivatives of the daubechies basis functions. Appl Math Comput 170(2):1006–1013

    MathSciNet  MATH  Google Scholar 

  30. CHEN M-Q, Hwang C, SHIH Y-P (1996) The computation of wavelet-galerkin approximation on a bounded interval. Int J Numer Meth Eng 39(17):2921–2944

    Article  MathSciNet  Google Scholar 

  31. Ko J, Kurdila AJ, Pilant MS (1995) A class of finite element methods based on orthonormal, compactly supported wavelets. Comput Mech 16(4):235–244

    Article  MathSciNet  Google Scholar 

  32. Beylkin G (1992) On the representation of operators in bases of compactly supported wavelets. SIAM J Numer Anal 29(6):1716–1740

    Article  MathSciNet  Google Scholar 

  33. Zhang T, Tian Y-C, Tadé MO, Utomo J (2007) Comments on "the computation of wavelet-galerkin approximation on a bounded interval". Int J Numer Meth Eng 72(2):244–251

    Article  Google Scholar 

  34. Rekatsinas CS, Nastos CV, Theodosiou TC, Saravanos DA (2015) A time-domain high-order spectral finite element for the simulation of symmetric and anti-symmetric guided waves in laminated composite strips. Wave Motion 53:1–19

    Article  MathSciNet  Google Scholar 

  35. Barouni AK (2016) A layerwise semi-analytical method for modeling guided wave propagation in laminated and sandwich composite strips with induced surface excitation. Aerosp Sci Technol 51:118–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Saravanos.

Appendix

Appendix

The displacement field through the thickness according to the FSDT takes the form

$$\begin{aligned} \ u(x,y,z,t)= & {} u^0(x,y,t)+\beta _x(x,y,t)\cdot z \end{aligned}$$
(27)
$$\begin{aligned} \ v(x,y,z,t)= & {} v^0(x,y,t)+\beta _y(x,y,t)\cdot z \end{aligned}$$
(28)
$$\begin{aligned} \ w(x,y,z,t)= & {} w^0(x,y,t) \end{aligned}$$
(29)

where \(u^0\), \(v^0\), \(w^0\) are the axial and transverse displacements at the mid-plane of the plate; \(\beta _x\), \(\beta _y\) are the rotations of the cross-section; and z is the local thickness coordinate. The in-plane strains \(\varepsilon _x\), \(\varepsilon _y\), \(\varepsilon _{xy}\) and the out of plane shear strains \(\varepsilon _{yz}\), \(\varepsilon _{xz}\) are shown below

$$\begin{aligned} \ \varepsilon _x(x,z,t)= & {} \varepsilon _{x}^{0} + k_x \cdot z \end{aligned}$$
(30)
$$\begin{aligned} \ \varepsilon _y(y,z,t)= & {} \varepsilon _{y}^{0} + k_y \cdot z \end{aligned}$$
(31)
$$\begin{aligned} \ \varepsilon _{xy}(x,y,t)= & {} \varepsilon _{xy}^{0} + k_{xy} \end{aligned}$$
(32)
$$\begin{aligned} \ \varepsilon _{yz}(y,z,t)= & {} \varepsilon _{yz}^{0} \end{aligned}$$
(33)
$$\begin{aligned} \ \varepsilon _{xz}(x,z,t)= & {} \varepsilon _{xz}^{0} \end{aligned}$$
(34)

In the previous Eqs. (3032), the generalized strains of the laminated plate cross section are defined as

(35)

where

\(\varepsilon _{x}^{0}, \varepsilon _{y}^{0}, \varepsilon _{xy}^{0} \) are implying membrane strains, \(k_x, k_y, k_{xy}\) are the curvatures and \(\varepsilon _{yz}^{0}, \varepsilon _{xz}^{0}\) are the out of plain strains. The comma in the subscript indicates differentiation. \(A's\), \(B's\) and \(D's\) are the extensional, bending and bending-extensional coupling stiffnesses. The principle of virtual work for a two-dimensional solid defined in terms of axial and transverse coordinates can be recast as

$$\begin{aligned} \delta V - \delta W + \delta T = 0 \end{aligned}$$
(36)

where \(\delta V\), \(\delta W\) and \(\delta T\) are the virtual strain energy, the virtual work induced by external applied forces and the virtual kinetic energy respectively. Each of the term in Eq. (36) is given by

$$\begin{aligned} \delta V&= \int _{\varOmega _0} \Bigg \{ \int _{-h/2}^{h/2} \left[ \left( \delta \varepsilon _x+z\delta k_{x}\right) \sigma _{xx} + \left( \delta \varepsilon _{y}+z\delta k_{y}\right) \sigma _{yy} + \right. \nonumber \\&\quad \left. \left( \delta \varepsilon _{xy}+z\delta k_{xy}\right) \sigma _{xy}+ \delta \varepsilon _{xz}\sigma _{xz}+ \delta \varepsilon _{yz}\sigma _{yz} \right] dz \Bigg \} dxdy \nonumber \\&= \int _{\varOmega _0}\underset{\thicksim }{\delta \varepsilon _{L}^{T} }[\mathbf {K}_L]\underset{\thicksim }{ \varepsilon _{L} }dxdy \end{aligned}$$
(37)
$$\begin{aligned} \delta W=&\int _{\varOmega _0}\delta w_0 \left[ \left( q_b+q_t\right) \right] dxdy+\int _{\varGamma _{\sigma }}\int _{-h/2}^{h/2} \left[ \left( \delta u_n + \right. \right. \nonumber \\&\left. \left. z\delta \beta _n\right) \hat{\sigma }_{nn} +\left( \delta u_s +z\delta \beta _s \right) \hat{\sigma }_{ns}+\delta w_0\hat{\sigma }_{nz}\right] dzds \end{aligned}$$
(38)
$$\begin{aligned} \delta T&=\int _{\varOmega _0} \int _{-h/2}^{h/2}\rho \bigg [ \left( \delta {u}_0+z\delta {\beta }_x\right) \left( \ddot{u}_0 +z \ddot{\beta }_x\right) \nonumber \\&+\left( \delta {v}_0+z \delta {\beta }_y\right) \left( \ddot{v}_0 +z\ddot{\beta }_y\right) + \delta {w}_0\ddot{w}_0 \bigg ]dz\; dxdy\nonumber \\&=\int _{\varOmega _0}\underset{\thicksim }{\delta u_{L}^{T} } [\varvec{\rho }_L]\underset{\thicksim }{ \ddot{u}_{L} }dxdy \end{aligned}$$
(39)

where \(\varGamma _{\sigma }\) denotes a portion of the boundary \(\varGamma \) and

(40)

and

(41)

where \(\rho _A\), \(\rho _B\), \(\rho _D\) are the areal mass, \(1\mathrm{st}\) order inertia and the rotational inertia of the laminate respectively. For symmetric laminates \(\rho _B =0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nastos, C.V., Theodosiou, T.C., Rekatsinas, C.S. et al. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates. Comput Mech 62, 1187–1198 (2018). https://doi.org/10.1007/s00466-018-1558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1558-9

Keywords

Navigation