Skip to main content
Log in

A multi-material topology optimization approach for wrinkle-free design of cable-suspended membrane structures

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In order to eliminate stress-related wrinkles in cable-suspended membrane structures and to provide simple and reliable deployment, this study presents a multi-material topology optimization model and an effective solution procedure for generating optimal connected layouts for membranes and cables. On the basis of the principal stress criterion of membrane wrinkling behavior and the density-based interpolation of multi-phase materials, the optimization objective is to maximize the total structural stiffness while satisfying principal stress constraints and specified material volume requirements. By adopting the cosine-type relaxation scheme to avoid the stress singularity phenomenon, the optimization model is successfully solved through a standard gradient-based algorithm. Four-corner tensioned membrane structures with different loading cases were investigated to demonstrate the effectiveness of the proposed method in automatically finding the optimal design composed of curved boundary cables and wrinkle-free membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mikulas MM, Adler AL (2003) Rapid structural assessment approach for square solar sails including edge support cords. In: 44th AIAA/ASME/ASCE/AHS structures, structural dynamics, and materials conference, 7–10 April, Norfolk, Virginia

  2. Murphey M, Murphy D, Mikulas M, Adler AL (2002) A method to quantify the trust degradation effects of structural wrinkles in solar sails. In: 43rd AIAA/ASME/ASCE/AHS Structures, structural dynamics, and materials conference, AIAA-2002-1560, Denver, CO

  3. Masahisa F, Osamu K, Seiichiro F (1989) Analysis of fabric tension structures. Comput Struct 32:537–547

    Article  MATH  Google Scholar 

  4. Wong YW, Pellegrino A, Park KC (2003) Prediction of wrinkle amplitudes in square solar sails. In: 44th AIAA/ASME/ASCE/AHS structures, structural dynamics, and materials conference, 7–10 April, Norfolk, Virginia

  5. Senda K, Petrovic M, Nakanishi K (2015) Wrinkle generation in shear-enforced rectangular membrane. Acta Astronaut 111:110–135

    Article  Google Scholar 

  6. Brau F, Damman P, Diamant H, Witten TA (2013) Wrinkle to fold transition: influence of the substrate response. Soft Matter 9:8177–8186

    Article  Google Scholar 

  7. Huang Y, Chen H, Wu J, Feng X (2014) Controllable wrinkle configurations by soft micro-patterns to enhance the stretchability of Si ribbons. Soft Matter 10:2559–2566

    Article  Google Scholar 

  8. Huang Q, Hu H, Yu K, Potier-Ferry M, Belouettar S, Damil N (2015) Macroscopic simulation of membrane wrinkling for various loading cases. Int J Solids Struct 64–65:246–258

    Article  Google Scholar 

  9. Xu F, Potier-Ferry M (2016) A multi-scale modeling framework for instabilities of film/substrate systems. J Mech Phys Solids 86:150–172

    Article  MathSciNet  Google Scholar 

  10. Kim JY, Lee JB (2002) A new technique for optimum cutting pattern generation of membrane structures. Eng Struct 24:745–756

    Article  Google Scholar 

  11. Punurai W, Tongpool W, Morales JH (2012) Implementation of genetic algorithm for optimum cutting pattern generation of wrinkle free finishing membrane structures. Finite Elem Anal Des 58:84–90

    Article  Google Scholar 

  12. Akita T, Natori MC (2008) Sensitivity analysis method for membrane wrinkling based on the tension-field theory. AIAA J 46(6):1516–1526

    Article  Google Scholar 

  13. Yan D, Zhang K, Peng F, Hu G (2014) Tailoring the wrinkle pattern of a microstructured membrane. Appl Phys Lett 105:071905

    Article  Google Scholar 

  14. Duan B, Gao F, Du J, Zhang S (2015) Optimization and experiment of an electrostatic forming membrane reflector in space. J Mech Sci Technol 29(4):1355–1360

    Article  Google Scholar 

  15. Lim CW, Toropov VV, Ye J (2012) Shape optimization of membrane structures based on finite element simulation. In: Proceedings of the eleventh international conference on computational structures technology, Civil-Comp Press, Stirlingshire

  16. Sakamoto H, Park KC, Miyazaki Y (2005) Dynamic wrinkle reduction strategies for cable-suspended membrane structures. J Spacecr Rockets 42(5):850–858

    Article  Google Scholar 

  17. Sakamoto H, Park KC, Miyazaki Y (2007) Evaluation of membrane structures designs using boundary web cables for uniform tensioning. Acta Astronaut 60:846–857

    Article  Google Scholar 

  18. Dinh TD, Rezaei A, Punurai W, De Laet L, Mollaert M, Van Hemelrijck D, Van Paepegem W (2016) A shape optimization approach to integrated design and nonlinear analysis of tensioned fabric membrane structures with boundary cables. Int J Solids Struct 83:114–125

    Article  Google Scholar 

  19. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  20. Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  21. Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067

    Article  MathSciNet  Google Scholar 

  22. Yin L, Ananthasuresh GK (2001) Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct Multidiscip Optim 23(1):49–62

    Article  Google Scholar 

  23. Zhou S, Wang MY (2007) Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct Multidiscip Optim 33(2):89–111

    Article  MathSciNet  MATH  Google Scholar 

  24. Ramani A (2010) A pseudo-sensitivity based discrete-variable approach to structural topology optimization with multiple materials. Struct Multidiscip Optim 41(6):913–934

    Article  Google Scholar 

  25. Cai K, Cao J, Shi J, Liu L, Qin QH (2016) Optimal layout of multiple bi-modulus materials. Struct Multidiscip Optim 53(4):801–811

    Article  MathSciNet  Google Scholar 

  26. Shi J, Cao J, Cai K, Wang Z, Qin QH (2016) Layout optimization for multi-bi-modulus materials system under multiple load cases. Eng Comput. doi:10.1007/s00366-016-0450-5

  27. Tavakoli R (2016) Optimal design of multiphase composites under elastodynamic loading. Comput Methods Appl Mech Eng 300:265–293

    Article  MathSciNet  Google Scholar 

  28. Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6–8):469–496

    Article  MathSciNet  MATH  Google Scholar 

  29. Guo X, Zhang W, Zhong W (2014) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268(1):632–655

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang Y, Luo Z, Kang Z, Zhang N (2015) A multi-material level set-based topology and shape optimization method. Comput Methods Appl Mech Eng 283(1):1570–1586

    Article  MathSciNet  Google Scholar 

  31. Ding H, Yang B (2003) The modeling and numerical analysis of wrinkled membranes. Int J Numer Methods Eng 58(12):1785–1801

    Article  MATH  Google Scholar 

  32. Miyazaki Y (2006) Wrinkle/slack model and finite element dynamics of membrane. Int J Numer Methods Eng 66:1179–1209

    Article  MATH  Google Scholar 

  33. Kang S, Im S (1997) Finite element analysis of wrinkling membranes. J Appl Mech 64:263–269

    Article  MATH  Google Scholar 

  34. Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478

    Article  MathSciNet  MATH  Google Scholar 

  35. Kirsch U (1990) On singular topologies in optimum structural design. Struct Multidiscip Optim 2:133–142

    Article  Google Scholar 

  36. Cheng G, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20:129–148

    Article  Google Scholar 

  37. Cheng G, Guo X (1997) \(\upvarepsilon \)-relaxed approach in structural topology optimization. Struct Multidiscip Optim 13:258–266

    Article  Google Scholar 

  38. Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscipl Optim 36:125–141

    Article  MathSciNet  MATH  Google Scholar 

  39. Luo Y, Wang MY, Zhou M, Deng Z (2012) Optimal topology design of steel-concrete composite structures under stiffness and strength constraints. Comput Struct 112–113:433–444

    Article  Google Scholar 

  40. Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120–127

    Article  Google Scholar 

  41. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  42. Tessler A, Sleight DW, Wang JT (2005) Effective modeling and nonlinear shell analysis of thin membranes exhibiting structural wrinkling. J Spacecr Rockets 42(2):287–298

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11472215, U1508209, 11425207, 11672056) and the Fundamental Research Funds for the Central Universities (DUT15RC(3)026)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangjun Luo or Ming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Niu, Y., Li, M. et al. A multi-material topology optimization approach for wrinkle-free design of cable-suspended membrane structures. Comput Mech 59, 967–980 (2017). https://doi.org/10.1007/s00466-017-1387-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1387-2

Keywords

Navigation