Skip to main content

Advertisement

Log in

A structurally based viscoelastic model for passive myocardium in finite deformation

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper discusses the finite-deformation viscoelastic modeling for passive myocardium tissue. The formulations established can also be applied to model other fiber-reinforced soft tissue. Based on the morphological structure of the myocardium, a specific free-energy function is constructed to reflect its orthotropicity. After deriving the stress–strain relationships in the simple shear deformation, a genetic algorithm is used to optimally estimate the material parameters of the myocardial constitutive equation. The results show that the proposed myocardial model can well fit the shear experimental data. To validate the viscoelastic model, it is used to predict the creep and the dynamic responses of a cylindrical model of the left ventricle. Upon comparing the results calculated by the proven myocardial elastic model with those by the viscoelastic model, the merits of the latter are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fung Y (1993) Biomechanics: mechanical properties of living tissues, vol 12. Springer, Berlin

    Book  Google Scholar 

  2. Holzapfel G (2000) Nonlinear solid mechanics: a continuum approach for engineering. John Wiley & Sons Ltd, Chichester

    MATH  Google Scholar 

  3. Taber L (2004) Nonlinear theory of elasticity: applications in biomechanics. World Scientific Pub Co Inc, Singapore

    Book  MATH  Google Scholar 

  4. Pandolfi A, Manganiello F (2006) A model for the human cornea: constitutive formulation and numerical analysis. Biomech Model Mechanobiol 5(4):237–246

    Article  Google Scholar 

  5. Pena E, Calvo B, Martínez M, Doblaré M (2007) An anisotropic visco-hyperelastic model for ligaments at finite strains. Formulation and computational aspects. Int J Solids Struct 44(3):760–778

    Article  MATH  Google Scholar 

  6. Grytz R, Meschke G (2009) Constitutive modeling of crimped collagen fibrils in soft tissues. J Mech Behav Biomed Mater 2(5):522–533

    Article  Google Scholar 

  7. Natali AN, Fontanella CG, Carniel EL (2012) Constitutive formulation and numerical analysis of the heel pad region. Comput Methods Biomech Biomed Eng 15:401–409

    Article  Google Scholar 

  8. Humphrey J (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, Berlin

    Book  Google Scholar 

  9. Ethier C, Simmons C (2007) Introductory biomechanics: from cells to organisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Kocica M, Corno A, Carreras-Costa F, Ballester-Rodes M, Moghbel M, Cueva C, Lackovic V, Kanjuh V, Torrent-Guasp F (2006) The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium. Eur J Cardio-Thorac Surg 29(Supplement 1):S21–S40

    Article  Google Scholar 

  11. LeGrice I, Smaill B, Chai L, Edgar S, Gavin J, Hunter P (1995) Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol Heart Circ Physiol 269(2):H571–H582

    Google Scholar 

  12. Anderson RH, Smerup M, Sanchez-Quintana D, Loukas M, Lunkenheimer PP (2009) The three-dimensional arrangement of the myocytes in the ventricular walls. Clin Anatomy 22(1):64–76

    Article  Google Scholar 

  13. Demer L, Yin F (1983) Passive biaxial mechanical properties of isolated canine myocardium. J Physiol 339(1):615–630

    Article  Google Scholar 

  14. Dokos S, Smaill B, Young A, LeGrice I (2002) Shear properties of passive ventricular myocardium. Am J Physiol Heart Circ Physiol 283(6):H2650–H2659

    Article  Google Scholar 

  15. Sommer G, Schriefl AJ, Andrä M, Sacherer M, Viertler C, Wolinski H, Holzapfel GA (2015) Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater 24:172–192

    Article  Google Scholar 

  16. Sacks M, Chuong C (1993) A constitutive relation for passive right-ventricular free wall myocardium. J Biomech 26(11):1341–1345

    Article  Google Scholar 

  17. Nash M, Hunter P (2000) Computational mechanics of the heart. J Elast 61(1):113–141

    Article  MathSciNet  MATH  Google Scholar 

  18. Costa K, Holmes J, McCulloch A (2001) Modelling cardiac mechanical properties in three dimensions. Philos Trans Royal Soc A 359(1783):1233–1250

    Article  MATH  Google Scholar 

  19. Schmid H, Wang Y, Ashton J, Ehret A, Krittian S, Nash M, Hunter P (2009) Myocardial material parameter estimation: a comparison of invariant based orthotropic constitutive equations. Comput Methods Biomech Biomed Eng 12(3):283–295

    Article  Google Scholar 

  20. Loeffler L, Sagawa K (1975) A one-dimensional viscoelastic model of cat heart muscle studied by small length perturbations during isometric contraction. Circ Res 36(4):498–512

    Article  Google Scholar 

  21. Miller C, Vanni M, Keller B (1997) Characterization of passive embryonic myocardium by quasi-linear viscoelasticity theory. J Biomech 30(9):985–988

    Article  Google Scholar 

  22. Yao J, Varner VD, Brilli LL, Young JM, Taber LA, Perucchio R (2012) Viscoelastic material properties of the myocardium and cardiac jelly in the looping chick heart. J Biomech Eng 134(2):0245021–0245027

    Article  Google Scholar 

  23. Huyghe J, van Campen D, Arts T, Heethaar R (1991) The constitutive behaviour of passive heart muscle tissue: a quasi-linear viscoelastic formulation. J Biomech 24(9):841–849

    Article  Google Scholar 

  24. Gültekin O, Sommer G, Holzapfel GA, (2016) An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment. Comput Methods Biomech Biomed Eng 1–18

  25. Cansız FBC, Dal H, Kaliske M (2015) An orthotropic viscoelastic material model for passive myocardium: theory and algorithmic treatment. Comput Methods Biomech Biomed Eng 18:1160–1172

    Article  Google Scholar 

  26. Christensen R (2003) Theory of viscoelasticity. Dover Publications, New York

    Google Scholar 

  27. Kaliske M, Rothert H (1997) Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput Mech 19(3):228–239

    Article  MATH  Google Scholar 

  28. Horstemeyer MF, Bammann DJ (2010) Historical review of internal state variable theory for inelasticity. Int J Plast 26(9):1310–1334

    Article  MATH  Google Scholar 

  29. Segerstad PHA, Toll S, Larsson R (2009) Computational modelling of dissipative open-cell cellular solids at finite deformations. Int J Plast 25(5):802–821

    Article  MATH  Google Scholar 

  30. Zhu H, Sun L (2013) A viscoelastic-viscoplastic damage constitutive model for asphalt mixtures based on thermodynamics. Int J Plast 40:81–100

    Article  Google Scholar 

  31. Simo J (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60(2):153–173

    Article  MathSciNet  MATH  Google Scholar 

  32. Simo J, Hughes T (1998) Computational inelasticity, vol 7. Springer, Berlin

    MATH  Google Scholar 

  33. Nedjar B (2011) A time dependent model for unidirectional fibre-reinforced composites with viscoelastic matrices. Int J Solids Struct 48(16C17):2333–2339

    Article  Google Scholar 

  34. Guccione JM, McCulloch AD, Waldman LK (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng 113(1):42–55

    Article  Google Scholar 

  35. Holzapfel G, Ogden R (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans Royal Soc A 367(1902):3445–3475

    Article  MathSciNet  MATH  Google Scholar 

  36. Göktepe S, Acharya S, Wong J, Kuhl E (2011) Computational modeling of passive myocardium. Int J Numer Methods Biomed Eng 27(1):1–12

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang H, Gao H, Luo X, Berry C, Griffith B, Ogden R, Wang T (2013) Structure-based finite strain modelling of the human left ventricle in diastole. Int J Numer Methods Biomed Eng 29(1):83–103

    Article  MathSciNet  Google Scholar 

  38. Miller K, Chinzei K, Orssengo G, Bednarz P (2000) Mechanical properties of brain tissue in-vivo: experiment and computer simulation. J Biomech 33(11):1369–1376

    Article  Google Scholar 

  39. Gao Z, Lister K, Desai J (2010) Constitutive modeling of liver tissue: experiment and theory. Ann Biomed Eng 38(2):505–516

  40. Tsuiki K, l. Ritamn E (1980) Direct evidence that left ventricular myocardium is incompressible throughout systole and diastole. Tohoku J Exp Med 132(1):119–120

    Article  Google Scholar 

  41. Yin F, Chan C, Judd R (1996) Compressibility of perfused passive myocardium. Am J Physiol Heart Circ Physiol 271(5):H1864–H1870

    Google Scholar 

  42. Holzapfel G, Gasser T, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A 21(3):441–463

    Article  MATH  Google Scholar 

  43. Nguyen T, Jones R, Boyce B (2007) Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites. Int J Solids Struct 44(25–26):8366–8389

    Article  MATH  Google Scholar 

  44. Shariff M (2012) Physical invariant strain energy function for passive myocardium. Biomech Model Mechanobiol 19:1–9

    Google Scholar 

  45. Spencer A (1984) Constitutive theory for strongly anisotropic solids. Continuum theory of the mechanics of fibre-reinforced composites. Springer, New York, pp 1–32

  46. Merodio J, Ogden R (2006) The influence of the invariant on the stresscdeformation and ellipticity characteristics of doubly fiber-reinforced non-linearly elastic solids. Int J Non Linear Mech 41(4):556–563

    Article  MATH  Google Scholar 

  47. Shariff M (2012) Nonlinear orthotropic elasticity: only six invariants are independent. J Elast 15:1–5

    MathSciNet  Google Scholar 

  48. Holzapfel G, Ogden R (2009) On planar biaxial tests for anisotropic nonlinearly elastic solids. A continuum mechanical framework. Math Mech Solids 14(5):474–489

    Article  MATH  Google Scholar 

  49. Sorvari J, Hämäläinen J (2010) Time integration in linear viscoelasticity comparative study. Mech Time Depend Mater 14(3):307–328

    Article  Google Scholar 

  50. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    MATH  Google Scholar 

  51. Nair AU, Taggart DG, Vetter FJ (2007) Optimizing cardiac material parameters with a genetic algorithm. J Biomech 40(7):1646–1650

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Jin Shen.

Appendix: Stress for the cylindrical model

Appendix: Stress for the cylindrical model

In this appendix, the formulation of the deviatoric Cauchy stress, \({\hat{\sigma }}=\mathbf {F}^{\mathrm {T}}{\hat{\mathbf {S}}}\mathbf {F}\), appearing in the analysis of the cylindrical model is explicitly presented. The first ingredients for obtaining \({\hat{\sigma }}\) are the deformation invariants involved, which can be expressed as

$$\begin{aligned}&I_1 = r_i^2+r^2 \left( \frac{1}{R^2}+v^2\right) +\lambda ^2 \\&I_{4f}= \frac{r^2 \cos (\beta )^2}{R^2}-\frac{2 r^2 v \cos (\beta ) \sin (\beta )}{R}\nonumber \\&~~~~~~~~~~+\left( r^2 v^2+\lambda ^2\right) \sin (\beta )^2 \\&I_{4s} = r_i^2 \\&I_{8fs} = 0 \end{aligned}$$

Hence, the terms related to the invariant \( I_{8fs}\) cause no effect on the stress.

To make the presentation tractable, the stress components are treated separately:

  1. (1)

    for the component associated with the first invariant,

    $$\begin{aligned} (\varvec{\sigma })_1= & {} \mathbf {F}(\mathbb {P}:\mathbf {I}) \mathbf {F}^{\mathrm {T}}\\ {}= & {} cof_{1R}\mathbf {e}_R\mathbf {e}_R +cof_{1\varTheta }\mathbf {e}_{\varTheta }\mathbf {e}_{\varTheta }\\&+\,cof_{1Z}\mathbf {e}_Z\mathbf {e}_Z+cof_{1Z\varTheta }\mathbf {e} _Z\mathbf {e}_{\varTheta } \end{aligned}$$

    in which the three coefficients are explicitly expressed as

    $$\begin{aligned}&cof_{1R} = \frac{1}{3} \left[ 2 r_i^2+r^2 \left( -\frac{1}{R^2} -v^2\right) -\lambda ^2\right] \\&cof_{1\varTheta } = \frac{2 r^2 \left( 1+R^2 v^2\right) -R^2 \left( r_i^2+\lambda ^2\right) }{3 R^2} \\&cof_{1Z} = \frac{1}{3} \left[ -r_i^2+r^2 \left( -\frac{1}{R^2}-v^2\right) +2 \lambda ^2\right] \\&cof_{1Z\varTheta }=r v \lambda \end{aligned}$$
  2. (2)

    for the component in the fiber direction associated with the invariant \(I_{4f}\),

    $$\begin{aligned} (\varvec{\sigma })_{4f}= & {} \mathbf {F}(\mathbb {P}: \mathbf {f}_0\otimes \mathbf {f}_0)\mathbf {F}^{\mathrm {T}}\\= & {} cof_{4fR}\mathbf {e}_R\mathbf {e}_R +cof_{4f\varTheta }\mathbf {e}_{\varTheta }\mathbf {e}_{\varTheta } +cof_{4fZ}\mathbf {e}_Z\mathbf {e}_Z \end{aligned}$$

    whose coefficients are

    $$\begin{aligned} cof_{4fR}= & {} -\frac{1}{3 R^2}\Big (r^2 \cos (\beta )^2+\,R \sin (\beta ) [-2 r^2 v \cos (\beta )\\\nonumber&+R \left( r^2 v^2+\lambda ^2\right) \sin (\beta )]\Big ) \\ cof_{4f\varTheta }= & {} \frac{1}{3 R^2}\Big (2 r^2 \cos (\beta )^2-4 r^2 R v \cos (\beta ) \sin (\beta )\\ \nonumber&+\,R^2 \left( 2 r^2 v^2-\lambda ^2\right) \sin (\beta )^2\Big )\\ cof_{4fZ}= & {} \frac{1}{3 R^2}\Big (-r^2 \cos (\beta )^2+R^2 \left( -r^2 v^2+2 \lambda ^2\right) \\&\times \sin (\beta )^2+r^2 R v \sin (2 \beta )\Big )\\ cof_{4fZ\varTheta }= & {} \frac{r \lambda \sin (\beta ) [-\cos (\beta )+\,R v \sin (\beta )]}{R} \end{aligned}$$
  3. (3)

    for the component in the sheet direction associated with the invariant \(I_{4s}\),

    $$\begin{aligned} (\varvec{\sigma })_{4s}= & {} \mathbf {F}(\mathbb {P}:\mathbf {s}_0 \otimes \mathbf {s}_0)\mathbf {F}^{\mathrm {T}}\\= & {} cof_{4sR}\mathbf {e}_R\mathbf {e}_R +cof_{4s\varTheta }\mathbf {e}_{\varTheta }\mathbf {e}_{\varTheta }+cof_{4sZ} \mathbf {e}_Z\mathbf {e}_Z \end{aligned}$$

    whose coefficients are

    $$\begin{aligned} cof_{4sR}= & {} \frac{2 r_i^2}{3}\\ cof_{4s\varTheta }= & {} -\frac{r_i^2}{3} \\ cof_{4sZ}= & {} -\frac{r_i^2}{3}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J.J. A structurally based viscoelastic model for passive myocardium in finite deformation. Comput Mech 58, 491–509 (2016). https://doi.org/10.1007/s00466-016-1303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1303-1

Keywords

Navigation