Skip to main content
Log in

Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this study, a posteriori error estimation and goal-oriented mesh adaptivity are developed for phase-field fracture propagation. Goal functionals are computed with the dual-weighted residual (DWR) method, which is realized by a recently introduced novel localization technique based on a partition-of-unity (PU). This technique is straightforward to apply since the weak residual is used. The influence of neighboring cells is gathered by the PU. Consequently, neither strong residuals nor jumps over element edges are required. Therefore, this approach facilitates the application of the DWR method to coupled (nonlinear) multiphysics problems such as fracture propagation. These developments then allow for a systematic investigation of the discretization error for certain quantities of interest. Specifically, our focus on the relationship between the phase-field regularization and the spatial discretization parameter in terms of goal functional evaluations is novel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ainsworth M, Oden JT (1997) A posteriori error estimation in finite element analysis. Comput Methods Appl Mech Eng 142(1–2):1–88

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55(2):383–405

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio L, Tortorelli V (1990) Approximation of functionals depending on jumps by elliptic functionals via \(\gamma \)-convergence. Commun Pure Appl Math 43:999–1036

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio L, Tortorelli V (1992) On the approximation of free discontinuity problems. Boll Unione Mat Ital B 6:105–123

    MathSciNet  MATH  Google Scholar 

  5. Amor H, Marigo J-J, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    Article  MATH  Google Scholar 

  6. Andersson J, Mikayelyan H (2015) The asymptotics of the curvature of the free discontinuity set near the cracktip for the minimizers of the Mumford–Shah functional in the plain. A revision. https://scirate.com/arxiv/1204.5328

  7. Apel T, Saendig A-M, Whiteman JR (1996) Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math Methods Appl Sci 19(1):63–85

    Article  MathSciNet  MATH  Google Scholar 

  8. Artina M, Fornasier M, Micheletti S, Perotto S (2015) Anisotropic mesh adaptation for crack detection in brittle materials. SIAM J Sci Comput 37(4):B633–B659

    Article  MathSciNet  MATH  Google Scholar 

  9. Bangerth W, Rannacher R (2003) Adaptive finite element methods for differential equations. Lectures in mathematics. Birkhäuser, ETH, Zürich

    Book  MATH  Google Scholar 

  10. Bangerth W, Hartmann R, Kanschat G (2007) deal.II—a general purpose object oriented finite element library. ACM Trans Math Softw 33(4):24/1–24/27

    Article  MathSciNet  Google Scholar 

  11. Bangerth W, Heister T, Kanschat G (2012) Differential equations analysis library

  12. Becker R, Rannacher R (1995) Weighted a posteriori error control in FE methods. In: Bock eaHG (ed) ENUMATH’97. World Sci. Publ., Singapore

    Google Scholar 

  13. Becker R, Rannacher R (2001) An optimal control approach to error control and mesh adaptation in finite element methods. In: Iserles A (ed) Acta Numerica 2001. Cambridge University Press, Cambridge, pp 1–102

    Google Scholar 

  14. Belletini G, Coscia A (1994) Discrete approximation of a free discontinuity problem. Numer Funct Anal Optim 15:201–224

    Article  MathSciNet  MATH  Google Scholar 

  15. Blum H, Suttmeier F-T (1999) An adaptive finite element discretisation for a simplified Signorini problem. Calcolo 37(2):65–77

    Article  MathSciNet  MATH  Google Scholar 

  16. Blum H, Suttmeier F-T (2000) Weighted error estimates for finite element solutions of variational inequalities. Computing 65(2):119–134

    Article  MathSciNet  MATH  Google Scholar 

  17. Bonnet A, David G (2001) Cracktip is a global Mumford–Shah minimizer. Asterisque no. 274

  18. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77–95

    Article  MathSciNet  MATH  Google Scholar 

  19. Borden MJ, Hughes TJ, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118

    Article  MathSciNet  MATH  Google Scholar 

  20. Bourdin B (2007) Numerical implementation of the variational formulation for quasi-static brittle fracture. Interfaces Free Bound 9:411–430

    Article  MathSciNet  MATH  Google Scholar 

  21. Bourdin B, Francfort G, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Article  MathSciNet  MATH  Google Scholar 

  22. Bourdin B, Francfort G, Marigo J-J (2008) The variational approach to fracture. J Elast 91(1–3):1–148

    MathSciNet  MATH  Google Scholar 

  23. Bourdin B, Chukwudozie C, Yoshioka K (2012) A variational approach to the numerical simulation of hydraulic fracturing. SPE Journal, conference paper 159154-MS

  24. Braack M, Ern A (2003) A posteriori control of modeling errors and discretization errors. Multiscale Model Simul 1(2):221–238

    Article  MathSciNet  MATH  Google Scholar 

  25. Braides A (1998) Approximation of free-discontinuity problems. Springer, Berlin

    MATH  Google Scholar 

  26. Burke S, Ortner C, Süli E (2010) An adaptive finite element approximation of a variational model of brittle fracture. SIAM J Numer Anal 48(3):980–1012

    Article  MathSciNet  MATH  Google Scholar 

  27. Burke S, Ortner C, Süli E (2013) An adaptive finite element approximation of a generalized Ambrosio–Tortorelli functional. M3AS 23(9):1663–1697

    MathSciNet  MATH  Google Scholar 

  28. dal Maso G, Francfort GA, Toader R (2005) Quasistatic crack growth in nonlinear elasticity. Arch Ration Mech Anal 176:165–225

    Article  MathSciNet  MATH  Google Scholar 

  29. Eriksson K, Estep D, Hansbo P, Johnson C (1995) Introduction to adaptive methods for differential equations. In: Iserles A (ed) Acta Numerica 1995. Cambridge University Press, Cambridge, pp 105–158

    Google Scholar 

  30. Francfort G, Marigo J-J (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  31. Gerasimov T, Lorenzis LD (2015) A line search assisted monolithic approach for phase-field computing of brittle fracture. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2015.12.017

  32. Giles M, Süli E (2002) Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. In: Iserles A (ed) Acta Numerica 2002. Cambridge University Press, London, pp 145–236

    Chapter  Google Scholar 

  33. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond 221:163–198

    Article  Google Scholar 

  34. Großmann C, Roos H-G (2005) Numerische Behandlung partieller Differentialgleichungen. Teubner-Studienbücher Mathematik; Lehrbuch Mathematik. Teubner, Wiesbaden, 3, völlig überarb. und erw. aufl. edition, 2005

  35. Heister T, Wheeler MF, Wick T (2015) A primal–dual active set method and predictor–corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 290:466–495

    Article  MathSciNet  Google Scholar 

  36. Hintermüller M, Hoppe R, Löbhard C (2014) Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities. ESAIM Control Optim Calc Var 20:524–546

    Article  MathSciNet  MATH  Google Scholar 

  37. Hoitinga W, van Brummelen E (2011) Goal-oriented adaptive methods for a Boltzmann-type equation. In: AIP conference proceedings, vol 1333. American Institute of Physics, p 81–86

  38. Kikuchi N, Oden J (1988) Contact problems in elasticity. Studies in applied mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Book  MATH  Google Scholar 

  39. Kuru G, Verhoosel C, van der Zee K, van Brummelen E (2014) Goal-adaptive isogeometric analysis with hierarchical splines. Comput Methods Appl Mech Eng 270:270–292

    Article  MathSciNet  MATH  Google Scholar 

  40. Kuzmin D, Korotov S (2010) Goal-oriented a posteriori error estimates for transport problems. Math Comput Simul 80(8):1674–1683

    Article  MathSciNet  MATH  Google Scholar 

  41. Lee S, Mikelic A, Wheeler M, Wick T (2016) Phase-field modeling of proppant-filled fractures in a poroelastic medium. ICES-report 16-03. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2016.02.008

  42. Mesgarnejad A, Bourdin B, Khonsari M (2015) Validation simulations for the variational approach to fracture. Comput Methods Appl Mech Eng 290:420–437

    Article  MathSciNet  Google Scholar 

  43. Meyer C, Rademacher A, Wollner W (2015) Adaptive optimal control of the obstacle problem. SIAM J Sci Comput 37(2):A918–A945

    Article  MathSciNet  MATH  Google Scholar 

  44. Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    Article  MathSciNet  MATH  Google Scholar 

  45. Miehe C, Welschinger F, Hofacker M (2010b) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311

    Article  MathSciNet  MATH  Google Scholar 

  46. Mikelić A, Wheeler MF, Wick T (2015a) A phase-field method for propagating fluid-filled fractures coupled to a surrounding porous medium. SIAM Multiscale Model Simul 13(1):367–398

    Article  MathSciNet  MATH  Google Scholar 

  47. Mikelić A, Wheeler MF, Wick T (2015b) Phase-field modeling of a fluid-driven fracture in a poroelastic medium. Comput Geosci 19(6):1171–1195

    Article  MathSciNet  Google Scholar 

  48. Mikelić A, Wheeler MF, Wick T (2015c) A quasi-static phase-field approach to pressurized fractures. Nonlinearity 28(5):1371–1399

    Article  MathSciNet  MATH  Google Scholar 

  49. Oden J, Prudhomme S (1999) On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput Methods Appl Mech Eng 176:313–331

    Article  MathSciNet  MATH  Google Scholar 

  50. Peraire J, Patera A (1998) Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement. In: Ladeveze P, Oden J (eds) Advances in adaptive computational methods in mechanics. Elsevier, Amsterdam, pp 199–215

    Chapter  Google Scholar 

  51. Rannacher R, Suttmeier F-T (1997) A feed-back approach to error control in finite element methods: application to linear elasticity. Computational Mechanics 19(5):434–446

    Article  MathSciNet  MATH  Google Scholar 

  52. Rannacher R, Suttmeier F-T (1998) A posteriori error control in finite element methods via duality techniques: Application to perfect plasticity. Computational Mechanics 21(2):123–133

    Article  MathSciNet  MATH  Google Scholar 

  53. Rannacher R, Suttmeier F-T (1999) A posteriori error estimation and mesh adaptation for finite element models in elasto-plasticity. Computer Methods in Applied Mechanics and Engineering 176(1–4):333–361

    Article  MathSciNet  MATH  Google Scholar 

  54. Rannacher R, Suttmeier F-T (2000) Error estimation and adaptive mesh design for FE models in elasto-plasticity. In: Stein E (ed) Error-Controlled Adaptive FEMs in Solid Mechanics. Wiley, Chichester

  55. Rice J (1968) Mathematical analysis in the mechanics of fracture, pages 191–311. Academic Press, New York, chapter 3 of fracture: an advanced treatise edition

  56. Richter T (2012) Goal-oriented error estimation for fluid–structure interaction problems. Comput Methods Appl Mech Eng 223–224:38–42

    MathSciNet  MATH  Google Scholar 

  57. Richter T, Wick T (2015) Variational localizations of the dual weighted residual estimator. J Comput Appl Math 279:192–208

    Article  MathSciNet  MATH  Google Scholar 

  58. Rueter M, Stein E (2006) Goal-oriented a posteriori error estimates in linear elastic fracture mechanics. Comput Methods Appl Mech Eng 195(46):251–278

    Article  MathSciNet  MATH  Google Scholar 

  59. Rüter M, Gerasimov T, Stein E (2013) Goal-oriented explicit residual-type error estimates in XFEM. Comput Mech 52(2):361–376

    Article  MathSciNet  MATH  Google Scholar 

  60. Schlüter A, Willenbücher A, Kuhn C, Müller R (2014) Phase field approximation of dynamic brittle fracture. Comput Mech 54:1141–1161

    Article  MathSciNet  MATH  Google Scholar 

  61. Schroeder A, Rademacher A (2011) Goal-oriented error control in adaptive mixed FEM for Signorini’s problem. Comput Methods Appl Mech Eng 200(1–4):345–355

    Article  Google Scholar 

  62. Sneddon IN (1946) The distribution of stress in the neighbourhood of a crack in an elastic solid. Proc R Soc Lond A 187:229–260

    Article  MathSciNet  Google Scholar 

  63. Sneddon IN, Lowengrub M (1969) Crack problems in the classical theory of elasticity. SIAM series in applied mathematics. Wiley, Philadelphia

    MATH  Google Scholar 

  64. Suttmeier F (2008) Numerical solution of variational inequalities by adaptive finite elements. Vieweg+Teubne, Wiesbaden

    Google Scholar 

  65. Suttmeier F-T (2001) General approach for a posteriori error estimates for finite element solutions of variational inequalities. Comput Mech 27(4):317–323

    Article  MathSciNet  MATH  Google Scholar 

  66. Tran D, Settari AT, Nghiem L (2013) Predicting growth and decay of hydraulic-fracture witdh in porous media subjected to isothermal and nonisothermal flow. SPE J 18(4):781–794

    Article  Google Scholar 

  67. Wheeler M, Wick T, Wollner W (2014) An augmented-Lagrangian method for the phase-field approach for pressurized fractures. Comput Methods Appl Mech Eng 271:69–85

    Article  MathSciNet  MATH  Google Scholar 

  68. Wick T (2015) Dual-weighted residual adaptivity for phase-field fracture propagation. PAMM 15(1):619–620

    Article  Google Scholar 

  69. Wriggers P (2006) Computational contact mechanics. Springer, Berlin

    Book  MATH  Google Scholar 

  70. Zee K, Brummelen E, Akkerman I, Borst R (2011) Goal-oriented error estimation and adaptivity for fluid–structure interaction using exact linearized adjoints. Comput Methods Appl Mech Eng 200:2738–2757

Download references

Acknowledgments

I wish to thank the reviewers for their critical comments that helped to improve the manuscript. Moreover, I am grateful to Ivo Babuska (ICES, UT Austin) for very initial discussions on error estimation of finite element discretizations for fracture modeling during my 2-year-stay at ICES from 2012 to 2014. The same acknowledgments go to Franz-Theo Suttmeier (Univ. Siegen) who gave some hints to mesh adaptation strategies for quasi-stationary evolution problems. Finally, I thank Mary F. Wheeler (ICES, UT Austin) and Andro Mikelić (Univ. Lyon) for our joint start on phase-field fracture modeling in poroelasticity and in particular pressurized fracture techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wick, T. Goal functional evaluations for phase-field fracture using PU-based DWR mesh adaptivity. Comput Mech 57, 1017–1035 (2016). https://doi.org/10.1007/s00466-016-1275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1275-1

Keywords

Mathematics Subject Classification (2010)

Navigation