Skip to main content
Log in

A variational formulation with rigid-body constraints for finite elasticity: theory, finite element implementation, and applications

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a new variational principle in finite elastostatics applicable to arbitrary elastic solids that may contain constitutively rigid spatial domains (e.g., rigid inclusions). The basic idea consists in describing the constitutive rigid behavior of a given spatial domain as a set of kinematic constraints over the boundary of the domain. From a computational perspective, the proposed formulation is shown to reduce to a set of algebraic constraints that can be implemented efficiently in terms of both single-field and mixed finite elements of arbitrary order. For demonstration purposes, applications of the proposed rigid-body-constraint formulation are illustrated within the context of elastomers, reinforced with periodic and random distributions of rigid filler particles, undergoing finite deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For instance, the shear modulus of a typical rubber is in the order of 0.1 MPa while the shear modulus of carbon black is in the order of 10 GPa.

  2. We note that different mixed variational principles which do not require any splitting of the deformation gradient into deviatoric (\(\overline{\mathbf{F }}\)) and volumetric (\(\mathrm{det}\,\mathbf F \)) parts are also available [5].

References

  1. Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  2. Brink U, Stein E (1996) On some mixed finite element methods for incompressible and nearly incompressible finite elasticity. Comput Mech 19(1):105–119

    Article  MATH  Google Scholar 

  3. Chang TYP, Saleeb AF, Li G (1991) Large strain analysis of rubber-like materials based on a perturbed lagrangian variational principle. Comput Mech 8(4):221–233

    Article  MATH  Google Scholar 

  4. Chen JS, Han W, Wu CT, Duan W (1997) On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity. Comput Methods Appl Mech Eng 142(3):335–351

    Article  MathSciNet  MATH  Google Scholar 

  5. Chi H, Talischi C, Lopez-Pamies O, Paulino GH (2015) Polygonal finite elements for finite elasticity. Int J Numer Methods Eng 101:305–328

    Article  MathSciNet  Google Scholar 

  6. Cook RD, Malkus DS, Plesha ME, Witt RJ (2002) Concepts and applications of finite element analysis, 4th edn. Wiley, New York

  7. Dunavant D (1985) High degree efficient symmetrical gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21(6):1129–1148

    Article  MathSciNet  MATH  Google Scholar 

  8. Goudarzi T, Spring DW, Paulino GH, Lopez-Pamies O (2015) Filled elastomers: a theory of filler reinforcement based on hydrodynamic and interphasial effects. J Mech Phys Solids. 80:37–67

  9. Hughes TJR (2012) The finite element method: linear static and dynamic finite element analysis. Courier Dover Publications, Mineola

    Google Scholar 

  10. Kouznetsova V, Geers M, Brekelmans W (2004) Multi-scale secondorder computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48):5525–5550

    Article  MATH  Google Scholar 

  11. Leblanc JL (2010) Filled polymers: science and industrial applications. CRC Press, Boca Raton

  12. Lopez-Pamies O (2010) An exact result for the macroscopic response of particle-reinforced Neo-Hookean solids. J Appl Mech 77(2):021016

    Article  Google Scholar 

  13. Lopez-Pamies O, Goudarzi T, Danas K (2013) The nonlinear elastic response of suspensions of rigid inclusions in rubber: II—a simple explicit approximation for finite-concentration suspensions. J Mech Phys Solids 61:19–37

    Article  MathSciNet  MATH  Google Scholar 

  14. Luenberger DG (1973) Introduction to linear and nonlinear programming, vol 28. Addison-Wesley, Reading

    MATH  Google Scholar 

  15. Michel J-C, Lopez-Pamies O, Ponte Castañeda P, Triantafyllidis N (2010) Microscopic and macroscopic instabilities in finitely strained fiber-reinforced elastomers. J Mech Phys Solids 58(11):1776–1803

    Article  MathSciNet  MATH  Google Scholar 

  16. Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Methods Eng 55(11):1285–1322

  17. Miehe C, Lambrecht M (2003) A two-scale finite element relaxation analysis of shear bands in non-convex inelastic solids: small-strain theory for standard dissipative materials. Comput Methods Appl Mech Eng 192(5):473–508

  18. Moraleda J, Segurado J, LLorca J (2009) Finite deformation of incompressible fiber-reinforced elastomers: a computational micromechanics approach. J Mech Phys Solids 57(9):1596–1613

  19. Segurado J, Llorca J (2002) A numerical approximation to the elastic properties of sphere-reinforced composites. J Mech Phys Solids 50(10):2107–2121

  20. Simo JC, Taylor RL, Pister KS (1985) Variational and projection methods for the volume constraint in finite deformation elasto-plasticity. Comput Methods Appl Mech Eng 51(1):177–208

  21. Sukumar N, Tabarraei A (2004) Conforming polygonal finite elements. Int J Numer Methods Eng 61(12):2045–2066

  22. Sussman T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput Struct 26(1):357–409

  23. Webb J (1990) Imposing linear constraints in finite-element analysis. Commun Appl Numer Methods 6(6):471–475

  24. Wriggers P (2008) Nonlinear finite element methods, vol 4. Springer, Berlin

  25. Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Butterworth-Heinemann, Oxford

Download references

Acknowledgments

We acknowledge the support from the US National Science Foundation (NSF) through Grant CMMI #1559595 (formerly #1437535). The information presented in this paper is the sole opinion of the authors and does not necessarily reflect the views of the sponsoring agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glaucio H. Paulino.

Appendix: On the FE implementation in 3D

Appendix: On the FE implementation in 3D

This appendix briefly describes the generalization of the FE implementation of the proposed rigid-body-constraint formulation to 3D. In this case, a set of four non-coplanar “reference” nodes is needed for each interface \(\Gamma ^i_h\) (in 3D, \(\Gamma ^i_h\) is the boundary of a polyhedral \(\Omega _{i h}^{(2)}\)). Assuming that we have four non-coplanar “reference” nodes for the interface \(\Gamma ^i_h\), denoted as \(\widetilde{\mathbf{X }}^i_r=\left\{ \tilde{x}^i_r,\tilde{y}^i_r,\tilde{z}^i_r\right\} ^T, r=1,2,3,4\), any linear field \(g\left( \mathbf X \right) \) can be interpolated exactly via

$$\begin{aligned} g\left( \mathbf X \right) =\sum _{r=1}^4\phi ^i_r\left( \mathbf X \right) \widetilde{g}^i_{,r}, \end{aligned}$$
(81)

where the interpolation functions are of the form

$$\begin{aligned} \phi ^i_1\left( \mathbf X \right)= & {} \frac{ \begin{vmatrix} 1&\quad x&\quad y&\quad z\\ 1&\quad \widetilde{x}^i_2&\quad \widetilde{y}^i_2&\quad \widetilde{z}^i_2\\ 1&\quad \widetilde{x}^i_3&\quad \widetilde{y}^i_3&\quad \widetilde{z}^i_3\\ 1&\quad \widetilde{x}^i_4&\quad \widetilde{y}^i_4&\quad \widetilde{z}^i_4\\ \end{vmatrix}}{\widetilde{\phi }^i},\quad \phi ^i_2\left( \mathbf X \right) =\frac{ \begin{vmatrix} 1&\quad \widetilde{x}^i_1&\quad \widetilde{y}^i_1&\quad \widetilde{z}^i_1\\ 1&\quad x&\quad y&\quad z\\ 1&\quad \widetilde{x}^i_3&\quad \widetilde{y}^i_3&\quad \widetilde{z}^i_3\\ 1&\quad \widetilde{x}^i_4&\quad \widetilde{y}^i_4&\quad \widetilde{z}^i_4\\ \end{vmatrix}}{\widetilde{\phi }^i}, \nonumber \\ \end{aligned}$$
(82)
$$\begin{aligned} \phi ^i_3\left( \mathbf X \right)= & {} \frac{ \begin{vmatrix} 1&\quad \widetilde{x}^i_1&\quad \widetilde{y}^i_1&\quad \widetilde{z}^i_1\\ 1&\quad \widetilde{x}^i_2&\quad \widetilde{y}^i_2&\quad \widetilde{z}^i_2\\ 1&\quad x&\quad y&\quad z\\ 1&\quad \widetilde{x}^i_4&\quad \widetilde{y}^i_4&\quad \widetilde{z}^i_4\\ \end{vmatrix}}{\widetilde{\phi }^i},\quad \phi ^i_4\left( \mathbf X \right) =\frac{ \begin{vmatrix} 1&\quad \widetilde{x}^i_1&\quad \widetilde{y}^i_1&\quad \widetilde{z}^i_1\\ 1&\quad \widetilde{x}^i_2&\quad \widetilde{y}^i_2&\quad \widetilde{z}^i_2\\ 1&\quad \widetilde{x}^i_3&\quad \widetilde{y}^i_3&\quad \widetilde{z}^i_3\\ 1&\quad x&\quad y&\quad z\\ \end{vmatrix}}{\widetilde{\phi }^i}\nonumber \\ \end{aligned}$$
(83)

with

$$\begin{aligned} \widetilde{\phi }^i= \begin{vmatrix} 1&\quad \widetilde{x}^i_1&\quad \widetilde{y}^i_1&\quad \widetilde{z}^i_1\\ 1&\quad \widetilde{x}^i_2&\quad \widetilde{y}^i_2&\quad \widetilde{z}^i_2\\ 1&\quad \widetilde{x}^i_3&\quad \widetilde{y}^i_3&\quad \widetilde{z}^i_3\\ 1&\quad \widetilde{x}^i_4&\quad \widetilde{y}^i_4&\quad \widetilde{z}^i_4\\ \end{vmatrix}, \end{aligned}$$
(84)

and \(\mathbf X =\left\{ x,y,z\right\} ^T\). With help of (81), the unknown fields \(\mathbf u ^i_0\) and \(\mathbf H ^i\) can be written as

$$\begin{aligned} \mathbf u ^i_0+\mathbf H ^i\mathbf X =\sum _{r=1}^4\phi ^i_k \left( \mathbf X \right) \widetilde{\mathbf{u }}^i_{,r} \end{aligned}$$
(85)

with \(\widetilde{\mathbf{u }}^i_{,r}=\left\{ \widetilde{u}^i_{x,r},\widetilde{u}^i_{y,r},\widetilde{u}^i_{z,r}\right\} ^T\). The remainder of the generalizations for both displacement-based and mixed approximations can be obtained by simply expanding the dimensions of nodal variables (and consequently, the corresponding arrays and matrices), and following the same procedure described for the 2D case. For conciseness, they are not presented here. As a final remark, we note that there is a total of \(3n-6\) constraining equations for a given interface \(\Gamma ^i_h\) with n boundary nodes in 3D. Moreover, \(3n-12\) of the constraining equations are linear on the displacement DOFs (corresponding to Eqs. (71), (75) in 2D), and the remaining 6 are quadratic on the displacement DOFs of the “reference” nodes (corresponding to Eqs. (70), (74) in 2D).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, H., Lopez-Pamies, O. & Paulino, G.H. A variational formulation with rigid-body constraints for finite elasticity: theory, finite element implementation, and applications. Comput Mech 57, 325–338 (2016). https://doi.org/10.1007/s00466-015-1234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1234-2

Keywords

Navigation