Skip to main content
Log in

A non-invasive heuristic approach to shape optimization in forming

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The aim is to determine—relating to a given forming process—the optimal material (undeformed) configuration of a workpiece when knowing the target spatial (deformed) configuration. Therefore, the nodal positions of a discretized setting based on the finite element method (FEM) are the discrete free parameters of the form finding problem. As a verification, inputting the determined optimal material nodal positions, a subsequent re-computation of the forming process should then result in exactly the target spatial nodal positions. A new, non-invasive iterative algorithm, which is purely based on the nodal data of each iteration, is proposed to determine the discretized optimal material configuration. Specifically, the \(L^2\)-smoothed deformation gradient at each discretization node is used to update the discretized material configuration by a transformation of the difference vectors between the currently computed and the target spatial nodal positions. The iterative strategy can be easily coupled in a non-invasive fashion via subroutines with arbitrary external FEM software. Since only the computed positions of the discretization nodes are required for an update step within the form finding algorithm, the procedure does not depend on the specific material modelling and is moreover applicable to arbitrary element types, e. g. solid- or solid-shell-elements. Furthermore the convergence rate for solving the form finding problem is nearly linear. This is demonstrated by examples that are realized by a coupling of Matlab (iterative update procedure) and MSC.Marc (external FEM software). Solving the form finding problem to determine an optimum workpiece design is of great interest especially for metal forming applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Haftka R, Grandhi R (1986) Structural shape optimization—a survey. Comput Methods Appl Mech Eng 57–1:91–106. doi:10.1016/0045-7825(86)90072-1

    Article  MathSciNet  Google Scholar 

  2. Braibant V, Fleury C (1984) Shape optimal design using B-splines. Comput Methods Appl Mech Eng 44–3:247–267. doi:10.1016/0045-7825(84)90132-4

    Article  Google Scholar 

  3. Bletzinger KU, Wuechner R, Daoud F, Camprubi N (2005) Computational methods for form finding and optimization of shells and membranes. Comput Methods Appl Mech Eng 194:3438–3452. doi:10.1016/j.cma.2004.12.026

    Article  MATH  Google Scholar 

  4. Daoud F, Firl M, Bletzinger KU (2005) Filter techniques in shape optimization with CAD-free parametrization. Comput Methods Appl Mech Eng 57–1:91–106. doi:10.1016/0045-7825(86)90072-1

    Google Scholar 

  5. Firl M, Wuechner R, Bletzinger KU (2013) Regularization of shape optimization problems using FE-Based parametrization. Struct Multidiscip Optim 47:507–521. doi:10.1007/s00158-012-0843-z

    Article  MathSciNet  MATH  Google Scholar 

  6. Tortorelli D, Michaleris P (1994) Design sensitivity analysis: overview and review. Inverse Probl Eng 1–1:71–105. doi:10.1080/174159794088027573

    Article  Google Scholar 

  7. Michaleris P, Tortorelli D, Vidal C (1994) Tangent operators and design sensitivity formulations for transient nonlinear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng 37–14:2471–2499. doi:10.1002/nme.1620371408

    Article  Google Scholar 

  8. Germain S, Steinmann P (2012) On a recursive algorithm for avoiding mesh distortion in inverse form finding. J Serbian Soc Comput Mech 6–1:216–234

    Google Scholar 

  9. Germain S, Landkammer P (2013) On a recursive formulation for solving inverse form finding problems in isotropic elastoplasticity. Adv Model Simul Eng Sci 1:1–10. doi:10.1186/2213-7467-1-10

    Google Scholar 

  10. Landkammer P, Germain S, Steinmann P (2013) On inverse form finding in orthotropic plasticity. Comput Assist Methods Eng Sci 20:337–348

    Google Scholar 

  11. Germain S, Steinmann P (2011) Shape optimization for anisotropic elastoplasticity in logarithmic strain space. In: Proceedings of the XI International Conference on Computational Plasticity, ISBN: 978-84-89925-73-1, pp 1479-1490

  12. Acharjee S, Zabaras N (2006) The continuum sensitivity method for computational design of three-dimensional deformation processes. Comput Methods Appl Mech Eng 195:6822–6842

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo YQ, Batoz YL, Detraux JM, Duroux P (1990) Finite element procedures for strain estimations of sheet metal forming parts. Int J Numer Methods Eng 30:1385–1401

    Article  MATH  Google Scholar 

  14. Kim JY, Kim N, Huh MS (2000) Optimum blank design of an automobile sub-frame. J Mater Proc Technol 101:31–43

    Article  Google Scholar 

  15. Padmanabhan R, Oliveira MC, Baptista AJ, Alves JL, Menezes LF (2009) Blank design for deep drawn parts using parametric NURBS surfaces. J. Mater Proc Technol 209(5–6):2402–2411

    Article  Google Scholar 

  16. Knupp P (2000) Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—a framework for volume mesh optimization. Int J Numer Methods Eng. 48:1165–1185

    Article  MATH  Google Scholar 

  17. Hinton E, Campbell JS (1974) Local and global smoothing of discontinuous finite element functions using a least squares method. Int J Numer Methods Eng 8–3:461–480. doi:10.1002/nme.1620080303

    Article  MathSciNet  Google Scholar 

  18. Belytschko T, Wing KL, Moran B, Elkhodary KI (2013) Nonlinear finite elements for continua and structures. Wiley, New York. ISBN 978-1-118-63270-3

  19. Lehmann E, Schmaltz S, Germain S, Fassmann D, Weber C, Loehnert S, Schaper M, Bach FW, Steinmann P, Willner K, Wriggers P (2012) Material model identification for DC04 based on the numerical modelling of the polycristalline microstructure and experimental data. Key Eng Mater 504–506:993–998

    Article  Google Scholar 

  20. Schmaltz S, Willner K (2014) Comparison of different biaxial tests for the inverse identification of sheet metal parameters. Strain 50(5):389–403. doi:10.1111/str.12080

    Article  Google Scholar 

  21. Landkammer P, Steinmann P (2015) Application of a non-invasive form-finding algorithm to the ring compression test with varying friction coefficients. Key Eng Mater 651:1381–1386

  22. Landkammer P, Steinmann P (2015) A global damping factor for a non-invasive form finding algorithm. Proc Appl Math Mech 15(1):327–328

    Article  Google Scholar 

  23. Stupkiewicz S, Lengiewicz J, Korelc J (2010) Sensitivity analysis for frictional contact problems in the augmented Langrangian formulation. Comput Meth Appl Mech Eng 199:2165–2176

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is part of the collaborative research project Manufacturing of complex functional components with variants by using a new metal forming process - Sheet-Bulk metal forming (SFB/TR73: www.tr-73.de).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Steinmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landkammer, P., Steinmann, P. A non-invasive heuristic approach to shape optimization in forming. Comput Mech 57, 169–191 (2016). https://doi.org/10.1007/s00466-015-1226-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-015-1226-2

Keywords

Navigation