Skip to main content
Log in

LC-Grid: a linear global contact search algorithm for finite element analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The contact searching is computationally intensive and its memory requirement is highly demanding; therefore, it is significant to develop an efficient contact search algorithm with less memory required. In this paper, we propose an efficient global contact search algorithm with linear complexity in terms of computational cost and memory requirement for the finite element analysis of contact problems. This algorithm is named LC-Grid (Lei devised the algorithm and Chen implemented it). The contact space is decomposed; thereafter, all contact nodes and segments are firstly mapped onto layers, then onto rows and lastly onto cells. In each mapping level, the linked-list technique is used for the efficient storing and retrieval of contact nodes and segments. The contact detection is performed in each non-empty cell along non-empty rows in each non-empty layer, and moves to the next non-empty layer once a layer is completed. The use of migration strategy makes the algorithm insensitive to mesh size. The properties of this algorithm are investigated and numerically verified to be linearly proportional to the number of contact segments. Besides, the ideal ranges of two significant scale factors of cell size and buffer zone which strongly affect computational efficiency are determined via an illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Wang SP, Nakamachi E (1997) The inside-outside contact search algorithm for finite element analysis. Int J Numer Methods Eng 40(19):3665–3685

    Article  MathSciNet  MATH  Google Scholar 

  2. Han K, Peric D, Crook A, Owen D (2000) A combined finite/discrete element simulation of shot peening processes-Part I: studies on 2D interaction laws. Eng Comput 17(5):593–620

    Article  MATH  Google Scholar 

  3. Han K, Peric D, Owen D, Yu J (2000) A combined finite/discrete element simulation of shot peening processes-Part II: 3D interaction laws. Eng Comput 17(6):680–702

    Article  MATH  Google Scholar 

  4. Zhong Z-H, Nilsson L (1994) Automatic contact searching algorithm for dynamic finite element analysis. Comput Struct 52(2):187–197

    Article  MATH  Google Scholar 

  5. Whirley RG, Engelmann BE (1994) Automatic contact algorithm in DYNA3D for crashworthiness and impact problems. Nucl Eng Des 150(2–3):225–233

    Article  Google Scholar 

  6. Zhong ZH (1993) Finite element procedures for contact-impact problems. Oxford University Press, New York

    Google Scholar 

  7. Laursen TA (2003) Computational contact and impact mechanics. Springer, Berlin

    Book  Google Scholar 

  8. Wriggers P (2006) Computational contact mechanics, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  9. Chaudhary AB, Bathe KJ (1986) A solution method for static and dynamic analysis of three-dimensional contact problems with friction. Comput Struct 24(6):855–873

    Article  MATH  Google Scholar 

  10. Wriggers P, Van Vu T, Stein E (1990) Finite element formulation of large deformation impact-contact problems with friction. Comput Struct 37(3):319–331

    Article  MATH  Google Scholar 

  11. Benson DJ, Hallquist JO (1990) A single surface contact algorithm for the post-buckling analysis of shell structures. Comput Methods Appl Mech Eng 78(2):141–163

    Article  MathSciNet  MATH  Google Scholar 

  12. Campbell J, Vignjevic R, Libersky L (2000) A contact algorithm for smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 184(1):49–65

    Article  MathSciNet  MATH  Google Scholar 

  13. Seo S, Min O (2006) Axisymmetric SPH simulation of elasto-plastic contact in the low velocity impact. Comput Phys Commun 175(9):583–603

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang J, Chan D (2014) Frictional contact algorithms in SPH for the simulation of soil-structure interaction. Int J Numer Anal Methods 38(7):747–770

    Article  Google Scholar 

  15. Munjiza A (2004) The combined finite-discrete element method. Wiley, West Sussex

    Book  Google Scholar 

  16. Zang M, Lei Z, Wang S (2007) Investigation of impact fracture behavior of automobile laminated glass by 3D discrete element method. Comput Mech 41(1):73–83

    Article  MATH  Google Scholar 

  17. Hallquist J, Goudreau G, Benson D (1985) Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput Methods Appl Mech Eng 51(1):107–137

    Article  MathSciNet  MATH  Google Scholar 

  18. Heinstein MW, Mello FJ, Attaway SW, Laursen TA (2000) Contact-impact modeling in explicit transient dynamics. Comput Methods Appl Mech Eng 187(3–4):621–640

    Article  MATH  Google Scholar 

  19. Belytschko T, Lin JI (1987) A three-dimensional impact-penetration algorithm with erosion. Int J Impact Eng 5(1):111–127

    Article  Google Scholar 

  20. Zhong Z-H, Nilsson L (1996) A unified contact algorithm based on the territory concept. Comput Methods Appl Mech Eng 130(1–2):1–16

    Article  MathSciNet  MATH  Google Scholar 

  21. Oldenburg M, Nilsson L (1994) The position code algorithm for contact searching. Int J Numer Methods Eng 37(3):359–386

    Article  MATH  Google Scholar 

  22. Diekmann R, Hungershofer J, Lux M, Taenzer L, Wierum J (2000) Efficient contact search for finite element analysis. In: European congress on computational methods in applied sciences and engineering, Barcelona

  23. Wolff S, Bucher C (2013) Asynchronous collision integrators: explicit treatment of unilateral contact with friction and nodal restraints. Int J Numer Methods Eng 95(7):562–586

    Article  MathSciNet  Google Scholar 

  24. Bruneel HCJ, De Rycke I (2002) QuickTrace: a fast algorithm to detect contact. Int J Numer Methods Eng 54(2):299–316

    Article  MATH  Google Scholar 

  25. Munjiza A, Andrews K (1998) NBS contact detection algorithm for bodies of similar size. Int J Numer Methods Eng 43(1):131–149

    Article  MATH  Google Scholar 

  26. Wang FJ, Cheng JG, Yao ZH (2000) A contact searching algorithm for contact-impact problems. Acta Mech Sin 16(4):374–382

    Article  Google Scholar 

  27. Munjiza A, Rougier E, John N (2006) MR linear contact detection algorithm. Int J Numer Methods Eng 66(1):46–71

  28. Munjiza A, Knight E, Rougier E (2011) Computational mechanics of discontinua. Wiley, West Sussex

    Book  Google Scholar 

  29. Williams JR, Perkins E, Cook B (2004) A contact algorithm for partitioning N arbitrary sized objects. Eng Comput 2(3):235–248

    Article  Google Scholar 

  30. Belytschko T, Neal MO (1991) Contact-impact by the pinball algorithm with penalty and Lagrangian methods. Int J Numer Methods Eng 31(3):547–572

    Article  MATH  Google Scholar 

  31. Hallquist JO (2006) LS-DYNA theory manual. Livermore Software Technology Corporation

  32. Lei Z, Zang M (2010) An approach to combining 3D discrete and finite element methods based on penalty function method. Comput Mech 46(4):609–619

    Article  MathSciNet  MATH  Google Scholar 

  33. Lei Z (2011) Combined finite-discrete element methods and its application on impact fracture mechanism of automobile glass. Dissertation, South China University of Technology

  34. Hughes TJR, Taylor RL, Sackman JL, Curnier A, Kanoknukulchai W (1976) A finite element method for a class of contact-impact problems. Comput Methods Appl Mech Eng 8(3):249–276

    Article  MATH  Google Scholar 

  35. Carpenter NJ, Taylor RL, Katona MG (1991) Lagrange constraints for transient finite element surface contact. Int J Numer Methods Eng 32(1):103–128

    Article  MATH  Google Scholar 

  36. Taylor RL, Papadopoulos P (1993) On a finite element method for dynamic contact/impact problems. Int J Numer Methods Eng 36(12):2123–2140

    Article  MATH  Google Scholar 

  37. Laursen T, Chawla V (1998) Design of energy conserving algorithms for frictionless dynamic contact problems. Int J Numer Methods Eng 40(5):863–886

    Article  MathSciNet  Google Scholar 

  38. Armero F, Petőcz E (1998) Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comput Methods Appl Mech Eng 158(3–4):269–300

  39. Szuladzinski G (2010) Formulas for mechanical and structural shock and impact. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

This work was supported by the International Cooperation Project of the Ministry of Science and Technology of China (No. 2008DFA51740), the National Natural Science Foundation of China (No. 10972079 and 11172104). The valuable comments and suggestions from anonymous reviewers are gratefully acknowledged. Also the first author would want to express his gratitude to the China Scholarship Council and UNSW Canberra for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyan Zang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Lei, Z. & Zang, M. LC-Grid: a linear global contact search algorithm for finite element analysis. Comput Mech 54, 1285–1301 (2014). https://doi.org/10.1007/s00466-014-1058-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1058-5

Keywords

Navigation