Skip to main content
Log in

Arlequin based PGD domain decomposition

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Problems defined in fully or partially separable domains can be solved by considering a space separated representation of the unknown fields. Thus three-dimensional problems can be solved from the solution of some one-dimensional problems in the case of fully separated representations involving the three space coordinates or as a sequence of 2D and 1D problems in the case of partially separated representations (plates, shells or extruded geometries). When the domains become more complex, sometimes they can be simplified by using appropriate mappings. When it is not possible or such a transformation becomes too complex, the use of domain decomposition could facilitate the use of separated representations. However, domain coupling in the context of space separated representations have never been analyzed. In this paper we propose a domain decomposition strategy based on the use of space separated representations and the Arlequin coupling strategy. First we consider separated representations of the physical space that will be then extended to address parametric solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non Newton Fluid Mech 139:153–176

    Article  MATH  Google Scholar 

  2. Ammar A, Mokdad B, Chinesta K, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: Transient simulation using space-time separated representation. J Non Newton Fluid Mech 144:98–121

    Article  MATH  Google Scholar 

  3. Ammar A, Chinesta F, Diez P, Huerta A (2010) An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng 199:1872–1880

    Article  MathSciNet  MATH  Google Scholar 

  4. Ammar A, Huerta A, Chinesta F, Cueto E, Leygue A (2014) Parametric solutions involving geometry: a step towards efficient shape optimization. Comput Methods Appl Mech Eng 68(1):178–193

    Article  MathSciNet  Google Scholar 

  5. Ben Dhia H (1998) Multiscale mechanical problems: the Arlequin method. CR Acad Sci 326:899–904

    MATH  Google Scholar 

  6. Ben Dhia H, Rateau G (2005) The Arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62:1442–1462

    Article  MATH  Google Scholar 

  7. Ben Dhia H (2008) Further insights by theoretical investigations of the multiscale Arlequin method. Int J Multiscale Comput Eng 6(3):215–232

    Article  Google Scholar 

  8. Bernardi C, Maday Y, Patera AT (1994) A new non conforming approach to domain decomposition: The mortar element method. In H. Brezzi et al (eds) Nonlinear partial differential equations and their applications. Paris, pp 13–51

  9. Bognet B, Leygue A, Chinesta F, Poitou A, Bordeu F (2012) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng 201:1–12

    Article  Google Scholar 

  10. Bognet B, Leygue A, Chinesta F (2012) On the fully 3D simulation of thermoelastic models defined in plate geometries. Eur J Comput Mech 21(1–2):40–51

    Google Scholar 

  11. Bognet B, Leygue A, Chinesta F (2014) Separated representations of 3D elastic solutions in shell geometries. Adv Model Simul Eng Sci 1(1):1–34

    Article  Google Scholar 

  12. Cancès E, Defranceschi M, Kutzelnigg W, Le Bris C, Maday Y (2003) Computational Quantum Chemistry: a primer. Handbook of Numerical Analysis, vol X. Elsevier, pp 3–270

  13. Chinesta F, Leygue A, Bognet B, Ghnatios Ch, Poulhaon F, Bordeu F, Barasinski A, Poitou A, Chatel S, Maison-Le-Poec S (2014) First steps towards an advanced simulation of composites manufacturing by Automated Tape Placement. Int J Mater Form 7(1):81–92

  14. Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) PGD-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20:31–59

    Article  MathSciNet  Google Scholar 

  15. Chinesta F, Keunings R, Leygue A (2013) The Proper Generalized Decomposition for advanced numerical simulations. A primer, Springerbriefs, Springer

  16. Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Meth Eng 32:1205–1227

    Article  MATH  Google Scholar 

  17. Farhat C, Mandel J (1998) The two-level FETI method for static and dynamic plate problems - part I: an optimal iterative solver for biharmonic systems. Comput Methods Appl Mech Eng 155:129–152

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghnatios CH, Ammar A, Cimetiere A, Hamdouni A, Leygue A, Chinesta F (2012) First steps in the space separated representation of models defined in complex domains. ASME 2012: 11th Biennial conference on engineering systems design and analysis -ESDA 2012-, Nantes

  19. Gonzalez D, Ammar A, Chinesta F, Cueto E (2010) Recent advances in the use of separated representations. Int J Numer Methods Eng 81(5):637–659

    MathSciNet  MATH  Google Scholar 

  20. Ladeveze P, Lorong Ph (1992) A large time increment approach with domain decomposition technique for mechanical non linear problems. Comput Methods Appl Sci Eng INRIA 569–578

  21. Ladeveze P, Dureisseix D (1998) A 2-level and mixed domain decomposition approach for structural analysis. Contemp Math 218:246–253

  22. Ladeveze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192(28–30):3061–3087

    Article  MathSciNet  MATH  Google Scholar 

  23. Ladeveze P, Néron D, Gosselet P (2007) On a mixed and multiscale domain decomposition method. Comput Methods Appl Mech Eng 96:1526–1540

    Article  Google Scholar 

  24. Ladeveze P, Passieux J-C, Néron D (2010) The latin multiscale computational method and the proper generalized decomposition. Comput Methods Appl Mech Eng 199(21–22):1287–1296

    Article  MATH  Google Scholar 

  25. Ladeveze P, Chamoin L (2011) On the verification of model reduction methods based on the proper generalized decomposition. Comput Methods Appl Mech Eng 200:2032–2047

    Article  MathSciNet  MATH  Google Scholar 

  26. Leygue A, Chinesta F, Beringhier M, Nguyen TL, Grandidier JC, Pasavento F, Schrefler B (2013) Towards a framework for non-linear thermal models in shell domains. Int J Numer Methods Heat Fluid Flow 23(1):55–73

    Article  Google Scholar 

  27. Maday Y, Mavriplis C, Patera AT (1989) Nonconforming mortar element methods: application to spectral discretizations. Domain decomposition methods, Los Angeles, CA, 1988. SIAM, Philadelphia, pp 392–418

  28. Schwarz HA (1890) Gesammelte mathematische abhandlungen, vol 2. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Chinesta.

Appendices

Separated representation constructor: alternating direction strategy

Each iteration of the alternating direction scheme consists in the following two steps:

  • Calculating \(X_n^{p}(x)\) from \(Y_n^{p-1}(y)\) In this case, the approximation reads

    $$\begin{aligned} u^{n,p} (x,y) = \sum \limits _{i=1}^{n-1} X_i (x) \cdot Y_i (y) + X_n^p(x) \cdot Y_n^{p-1}(y) , \end{aligned}$$
    (53)

    where all functions are known except \(X_n^p(x)\). The simplest choice for the weight function \(u^*\) in the weighted residual formulation (7) is

    $$\begin{aligned} u^*(x,y) = X_n^*(x) \cdot Y_n^{p-1}(y), \end{aligned}$$
    (54)

    which amounts to select the Galerkin weighted residual form of the Poisson equation. Injecting (53) and (54) into (7), we obtain

    $$\begin{aligned}&\int \limits _{\varOmega _x \times \varOmega _y} X_n^*\cdot Y_n^{p-1} \cdot \Bigg ( \frac{d^2 X_n^p}{d x^2} \cdot Y_n^{p-1}\nonumber \\&\quad + X_n^p \cdot \frac{d^2 Y_n^{p-1}}{d y^2} \Bigg ) \ dx \cdot dy \ = \nonumber \\&\quad - \int \limits _{\varOmega _x \times \varOmega _y} X_n^*\cdot Y_n^{p-1} \cdot \sum \limits _{i=1}^{n-1} \Bigg ( \frac{d^2 X_i}{d x^2} \cdot Y_i \nonumber \\&\quad + X_i \cdot \frac{d^2 Y_i}{d y^2} \Bigg ) \ dx \cdot dy \ \nonumber \\&\quad + \ \int \limits _{\varOmega _x \times \varOmega _y} X_n^*\cdot Y_n^{p-1} \cdot f \ dx \cdot dy . \end{aligned}$$
    (55)

    Here comes a crucial point: since all functions of \(y\) are known in the above expression, we can compute the following one-dimensional integrals over \(\varOmega _y\):

    $$\begin{aligned} \left\{ \begin{array}{l} \alpha ^x = \int \limits _{\varOmega _y} \left( Y_n^{p-1}(y) \right) ^2 \ dy \\ \beta ^x = \int _{\varOmega _y} Y_n^{p-1}(y) \cdot \displaystyle {\frac{d^2 Y_n^{p-1}(y)}{d y^2}} \ dy \\ \gamma ^x_i = \int \limits _{\varOmega _y} Y_n^{p-1}(y) \cdot Y_i(y) \ dy \\ \delta ^x_i = \int \limits _{\varOmega _y} Y_n^{p-1}(y) \cdot \displaystyle {\frac{d^2 Y_i(y)}{d y^2}} \ dy \\ \xi ^x = \int \limits _{\varOmega _y} Y_n^{p-1}(y) \cdot f \ dy \end{array} \right. . \end{aligned}$$
    (56)

    Equation (55) becomes

    $$\begin{aligned}&\int \limits _{\varOmega _x } X_n^*\cdot \left( \alpha ^x \cdot \frac{d^2 X_n^p}{d x^2} + \beta ^x \cdot X_n^p \right) \ dx \ =\nonumber \\&- \int \limits _{\varOmega _x} X_n^*\cdot \sum \limits _{i=1}^{n-1} \left( \gamma ^x_i \cdot \frac{d^2 X_i}{d x^2} + \delta ^x_i \cdot X_i \right) \ dx \ \nonumber \\&\quad +\int \limits _{\varOmega _x} X_n^*\cdot \xi ^x \ dx .\nonumber \\ \end{aligned}$$
    (57)

    We have thus obtained the weighted residual form of a one-dimensional problem defined over \(\varOmega _x\) that can be solved (e.g. by the finite element method) to obtain the function \(X_n^{p}\) we are looking for. Alternatively, we can return to the corresponding strong formulation

    $$\begin{aligned}&\alpha ^x \cdot \frac{d^2 X_n^p}{d x^2} \!+\! \beta ^x \cdot X_n^p \ \!=\! \!-\!\ \sum \limits _{i\!=\!1}^{n-1} \left( \gamma ^x_i \cdot \frac{d^2 X_i}{d x^2} \!+\! \delta ^x_i \cdot X_i \right) \ \nonumber \\&\quad + \ \xi ^x , \end{aligned}$$
    (58)

    and solve it numerically by means of any suitable numerical method (e.g. finite differences, pseudo-spectral techniques, ...). The strong form (57) is a second-order ordinary differential equation for \(X_n^{p}\). This is due to the fact that the original Poisson equation involves a second-order \(x\)-derivative of the unknown field \(u\). With either the weighted residual or strong formulations, the homogeneous Dirichlet boundary conditions \(X_n^p(x=0)=X_n^p(x=L)=0\) are readily specified. Having thus computed \(X_n^p(x)\), we are now ready to proceed with the second step of iteration \(p\).

  • Calculating \(Y_n^{p}(y)\) from the just-computed \(X_n^p(x)\) The procedure exactly mirrors what we have done above. Indeed, we simply exchange the roles played by all relevant functions of \(x\) and \(y\). The current PGD approximation reads

    $$\begin{aligned} u^{n,p} (x,y) = \sum \limits _{i=1}^{n-1} X_i (x) \cdot Y_i (y) + X_n^p(x) \cdot Y_n^{p}(y), \end{aligned}$$
    (59)

    where all functions are known except \(Y_n^p(y)\) . The Galerkin formulation of (7) is obtained with the particular choice

    $$\begin{aligned} u^*(x,y) = X_n^p(x) \cdot Y_n^*(y) . \end{aligned}$$
    (60)

    Then, by introducing (59) and (60) into (7), we get

    $$\begin{aligned}&\int \limits _{\varOmega _x \times \varOmega _y} X_n^p \cdot Y_n^*\cdot \left( \frac{d^2 X_n^p}{d x^2} \cdot Y_n^p + X_n^p \cdot \frac{d^2 Y_n^p}{d y^2} \right) \ dx \cdot dy \nonumber \\&\quad =-\, \int \limits _{\varOmega _x \times \varOmega _y} X_n^p \cdot Y_n^*\cdot \sum \limits _{i=1}^{n-1} \left( \frac{d^2 X_i}{d x^2} \cdot Y_i \!+\! X_i \cdot \frac{d^2 Y_i}{d y^2} \right) \ dx \cdot dy\nonumber \\&\quad + \, \int \limits _{\varOmega _x \times \varOmega _y} X_n^p \cdot Y_n^*\cdot f \ dx \cdot dy . \end{aligned}$$
    (61)

    As all functions of \(x\) are known, the integrals over \(\varOmega _x\) can be computed to obtain

    $$\begin{aligned} \left\{ \begin{array}{l} \alpha ^y = \int \limits _{\varOmega _x} \left( X_n^p(x) \right) ^2 \ dx \\ \beta ^y = \int \limits _{\varOmega _x} X_n^p(x) \cdot \displaystyle {\frac{d^2 X_n^p(x)}{d x^2}} \ dx \\ \gamma ^y_i = \int \limits _{\varOmega _x} X_n^p(x) \cdot X_i(x) \ dx \\ \delta ^y_i = \int \limits _{\varOmega _x} X_n^p(x) \cdot \displaystyle {\frac{d^2 X_i(x)}{d x^2} } \ dx \\ \xi ^y = \int \limits _{\varOmega _x} X_n^p(x) \cdot f \ dx \end{array} \right. . \end{aligned}$$
    (62)

    Equation (61) becomes

    $$\begin{aligned}&\int \limits _{\varOmega _y } Y_n^*\cdot \left( \alpha ^y \cdot \frac{d^2 Y_n^p}{d y^2} + \beta ^y \cdot Y_n^p \right) \ dy = \nonumber \\&\quad - \int \limits _{\varOmega _y} Y_n^*\cdot \sum \limits _{i=1}^{n-1} \left( \gamma ^y_i \cdot \frac{d^2 Y_i}{d y^2} + \delta ^y_i \cdot Y_i \right) \ dy \ \nonumber \\&\quad + \, \int \limits _{\varOmega _y} Y_n^*\cdot \xi ^y \ dy. \end{aligned}$$
    (63)

    As before, we have thus obtained the weighted residual form of an elliptic problem defined over \(\varOmega _y\) whose solution is the function \(Y_n^{p}(y)\). Alternatively, the corresponding strong formulation of this one-dimensional problem reads

    $$\begin{aligned}&\alpha ^y \cdot \frac{d^2 Y_n^p}{d y^2} + \beta ^y \cdot Y_n^p \nonumber \\&\quad = \ -\sum \limits _{i=1}^{n-1} \left( \gamma ^y_i \cdot \frac{d^2 Y_i}{d y^2} + \delta ^y_i \cdot Y_i \right) + \, \xi ^y . \end{aligned}$$
    (64)

    This again is an ordinary differential equation of the second order, due to the fact that the original Poisson equation involves second-order derivatives of the unknown field with respect to \(y\). With both the weighted residual and strong formulations, the homogeneous Dirichlet boundary conditions \(Y_n^p(y=0)=Y_n^p(y=L)=0\) are readily specified.

We have thus completed iteration \(p\) at enrichment step \(n\).

Separated representation of the transformation Jacobians

The different Jacobian \(\mathcal {J}_1^j\) related to the mapping \(\mathcal {D}_1^j \rightarrow \mathcal {V}_1^j\) can be in the present example easily obtained for \(j=1, \ldots , 6\):

$$\begin{aligned} \left\{ \begin{array}{ll} \mathcal {J}_1^1 = \left( \begin{array}{cc} 1&{} 0 \\ 0&{}0.5 \end{array} \right) , &{} \mathbf {x} \in (0, 1.5) \times (0, 1) \\ \\ \mathcal {J}_1^2 = \left( \begin{array}{cc} 1&{} 0 \\ 0&{} 1 \end{array}\right) , &{} \mathbf {x} \in (0,1.5) \times (1,2) \\ \\ \mathcal {J}_1^3 = \left( \begin{array}{cc} 1&{}0 \\ 0&{}1.5 \end{array}\right) , &{} \mathbf {x} \in (0,1.5) \times (2,3) \\ \\ \mathcal {J}_1^4 =\left( \begin{array}{cc} 1&{} y \\ 0&{} x-1 \end{array}\right) , &{} \mathbf {x} \in (1.5,2) \times (0,1) \\ \\ \mathcal {J}_1^5 =\left( \begin{array}{cc} 1&{} 1 \\ 0&{} 1 \end{array}\right) , &{} \mathbf {x} \in (1.5,2) \times (1,2) \\ \\ \mathcal {J}_1^6 =\left( \begin{array}{cc} 1&{} 3-y \\ 0&{} 3-x \end{array}\right) ,&\mathbf {x} \in (1.5,2) \times (2,3) \end{array}\right. \end{aligned}$$
(65)

and similarly for the mapping \(\mathcal {D}_2^k \rightarrow \mathcal {V}_2^k\), \(k=1,2\).

The associated determinants result:

$$\begin{aligned} \left\{ \begin{array}{l} \det (\mathcal {J}_1^1) = 0.5 \\ \\ \det (\mathcal {J}_1^2) = 1 \\ \\ \det (\mathcal {J}_1^3) = 1.5 \\ \\ \det (\mathcal {J}_1^4) = x-1\\ \\ \det (\mathcal {J}_1^5) = 1 \\ \\ \det (\mathcal {J}_1^6) = 3-x \end{array}\right. \end{aligned}$$
(66)

The Jacobian of the inverse transformations also accepts a fully separated representation because as just proved the determinant of the Jacobian only involves functions of \(x\). For example, when considering \((\mathcal {J}_1^6)^{-1}\)

$$\begin{aligned} (\mathcal {J}_1^6)^{-1} = \frac{1}{\det (\mathcal {J}_1^6)} \ \left( \begin{array}{cc} 3-x &{} y-3 \\ 0 &{} 1 \end{array} \right) = \left( \begin{array}{cc} 1 &{} \frac{y-3}{3-x} \\ 0 &{} \frac{1}{3-x} \end{array} \right) \end{aligned}$$
(67)

that proves its fully separability.

In the most general case in which the determinant involves a two-terms sum where each term consists of the product of a function of \(x\) times a function of \(y\), the components of \((\mathcal {J}_1^j)\) have not a direct separated representation [4]. Approximated separated representations can be obtained by invoking the SVD (or the HOSVD) as indicated before.

After being calculated the Jacobian of the direct and inverse transformations of each quadrilateral we can compact the notation by introducing the characteristic function of each quadrilateral \(\mathcal {V}_1^j\) and \(\mathcal {V}_2^k\):

$$\begin{aligned} \chi _1^j(\mathbf {x}) = \left\{ \begin{array}{ll} 1 &{}\quad if \ \mathbf {x} \in \mathcal {V}_1^j = \left( x_1^{j-},x_1^{j+}\right) \times \left( y_1^{j-},y_1^{j+}\right) \\ 0 &{}\quad elsewhere \end{array} \right. \end{aligned}$$
(68)

and

$$\begin{aligned} \chi _2^k(\mathbf {x}) = \left\{ \begin{array}{ll} 1 &{}\quad if \ \mathbf {x} \in \mathcal {V}_2^k = \left( x_2^{k-},x_2^{k+}\right) \times \left( y_2^{k-},y_2^{k+}\right) \\ 0 &{}\quad elsewhere \end{array} \right. \end{aligned}$$
(69)

from which we can write the Jacobian of the mappings \(\varOmega _1 \rightarrow \mathcal {T}_1\) and \(\varOmega _2 \rightarrow \mathcal {T}_2\), respectively \(\mathcal {J}_1\) and \(\mathcal {J}_2\):

$$\begin{aligned} \mathcal {J}_1(\mathbf {x} \in \mathcal {T}_1) = \sum \limits _{j=1}^{6} \chi _1^j(\mathbf {x}) \cdot \mathcal {J}_1^j(\mathbf {x}) \end{aligned}$$
(70)

and

$$\begin{aligned} \mathcal {J}_2(\mathbf {x} \in \mathcal {T}_2) = \sum \limits _{k=1}^{2} \chi _2^k(\mathbf {x}) \cdot \mathcal {J}_2^k(\mathbf {x}) \end{aligned}$$
(71)

and similarly for the inverse transformations

$$\begin{aligned} (\mathcal {J}_1)^{-1}(\mathbf {x} \in \mathcal {T}_1) = \sum \limits _{j=1}^{6} \chi _1^j(\mathbf {x}) \cdot \left( \mathcal {J}_1^j(\mathbf {x})\right) ^{-1} \end{aligned}$$
(72)

and

$$\begin{aligned} (\mathcal {J}_2)^{-1}(\mathbf {x} \in \mathcal {T}_2) = \sum \limits _{k=1}^{2} \chi _2^k(\mathbf {x}) \cdot \left( \mathcal {J}_2^k(\mathbf {x})\right) ^{-1} \end{aligned}$$
(73)

The mapping determinants can be also expressed in the compact form

$$\begin{aligned} \det (\mathcal {J}_1(\mathbf {x} \in \mathcal {T}_1)) = \sum \limits _{j=1}^{6} \chi _1^j(\mathbf {x}) \cdot \ \det \left( \mathcal {J}_1^j(\mathbf {x})\right) \end{aligned}$$
(74)

and

$$\begin{aligned} \det (\mathcal {J}_2(\mathbf {x} \in \mathcal {T}_2)) = \sum \limits _{k=1}^{2} \chi _2^k(\mathbf {x}) \cdot \ \det \left( \mathcal {J}_2^k(\mathbf {x})\right) \end{aligned}$$
(75)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazeer, S.M., Bordeu, F., Leygue, A. et al. Arlequin based PGD domain decomposition. Comput Mech 54, 1175–1190 (2014). https://doi.org/10.1007/s00466-014-1048-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1048-7

Keywords

Navigation