Skip to main content

Advertisement

Log in

Robotic esophagectomy with outermost layer-oriented dissection for esophageal cancer: technical aspects and a retrospective review of a single-institution database

  • Dynamic Manuscript
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Systematic lymph node dissection in patients with gastric cancer could be sufficiently and reproducibly achieved along the outermost layer of the autonomic nerves and similar concept has been extensively used for robotic esophagectomy (RE) since 2018. This study aimed to determine the surgical and oncological safety of RE using the outermost layer-oriented approach for esophageal cancer (EC).

Methods

Sixty-six patients who underwent RE with total mediastinal lymphadenectomy for primary EC between April 2018 and December 2021 were retrospectively reviewed. All underwent the outermost layer-oriented approach with intraoperative nerve monitoring (IONM). Postoperative complications within 30 days were analyzed.

Results

Among the patients, 51 (77.3%) were male. The median age was 64 years, and the body mass index was 21.8 kg/m2. Furthermore, 58 (87.9%) patients had squamous cell carcinoma and eight (12.1%) patients had adenocarcinoma. Clinical stages I, II, and III were seen in 23 (34.8%), 23 (34.8%), and 16 (24.2%) patients, respectively. Thirty-four (51.5%) patients received preoperative treatment. No patient shifted to conventional thoracoscopic or open procedure intraoperatively. The median operative time was 716 min with 119 mL of blood loss. Additionally, 64 (97%) patients underwent R0 resection. The morbidity rates based on Clavien–Dindo grades ≥ II and ≥ IIIa were 30.3% and 10.6%, respectively, within 30 postoperative days. None died within 90 days postoperatively. Three (4.5%) patients exhibited recurrent laryngeal nerve (RLN) palsy (CD grade ≥ II). The sensitivity and specificity of IONM for RLN palsy were 50% and 98.3% at the right RLN and 33.3% and 98.0% at the left RLN, respectively.

Conclusion

RE with the outermost layer-oriented approach can provide safe short-term outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

EC:

Esophageal cancer

RCTs:

Randomized controlled trials

DVSS:

Da Vinci Surgical System

RE:

Robotic esophagectomy

OL:

Outermost layer

RLN:

Recurrent laryngeal nerve

CD:

Clavien–Dindo

IONM:

Intraoperative nerve monitoring

ICS:

Intercostal space

PPV:

Positive predictive value

NPV:

Negative predictive value

References

  1. Fujita H, Sueyoshi S, Tanaka T, Shirouzu K (2002) Three-field dissection for squamous cell carcinoma in the thoracic esophagus. Ann Thorac Cardiovasc Surg 8:328–335

    PubMed  Google Scholar 

  2. Cuesta MA, van der Wielen N, Weijs TJ, Bleys RL, Gisbertz SS, van Duijvendijk P, van Hillegersberg R, Ruurda JP, van Berge Henegouwen MI, Straatman J, Osugi H, van der Peet DL (2017) Surgical anatomy of the supracarinal esophagus based on a minimally invasive approach: vascular and nervous anatomy and technical steps to resection and lymphadenectomy. Surg Endosc 31:1863–1870

    Article  PubMed  Google Scholar 

  3. Biere SS, van Berge Henegouwen MI, Maas KW, Bonavina L, Rosman C, Garcia JR, Gisbertz SS, Klinkenbijl JH, Hollmann MW, de Lange ES, Bonjer HJ, van der Peet DL, Cuesta MA (2012) Minimally invasive versus open oesophagectomy for patients with oesophageal cancer: a multicentre, open-label, randomised controlled trial. The Lancet 379:1887–1892

    Article  Google Scholar 

  4. Mariette C, Markar SR, Dabakuyo-Yonli TS, Meunier B, Pezet D, Collet D, D’Journo XB, Brigand C, Perniceni T, Carrere N, Mabrut JY, Msika S, Peschaud F, Prudhomme M, Bonnetain F, Piessen G, Federation de Rechercheen C, French Eso-Gastric Tumors Working G (2019) Hybrid minimally invasive esophagectomy for esophageal cancer. N Engl J Med 380:152–162

    Article  PubMed  Google Scholar 

  5. Suda K, Nakauchi M, Inaba K, Ishida Y, Uyama I (2016) Robotic surgery for upper gastrointestinal cancer: current status and future perspectives. Dig Endosc 28:701–713

    Article  PubMed  Google Scholar 

  6. Suda K, Ishida Y, Kawamura Y, Inaba K, Kanaya S, Teramukai S, Satoh S, Uyama I (2012) Robot-assisted thoracoscopic lymphadenectomy along the left recurrent laryngeal nerve for esophageal squamous cell carcinoma in the prone position: technical report and short-term outcomes. World J Surg 36:1608–1616

    Article  PubMed  Google Scholar 

  7. Uyama I, Suda K, Nakauchi M, Kinoshita T, Noshiro H, Takiguchi S, Ehara K, Obama K, Kuwabara S, Okabe H, Terashima M (2019) Clinical advantages of robotic gastrectomy for clinical stage I/II gastric cancer: a multi-institutional prospective single-arm study. Gastric Cancer 22:377–385

    Article  Google Scholar 

  8. Suda K, Sakai M, Obama K, Yoda Y, Shibasaki S, Tanaka T, Nakauchi M, Hisamori S, Nishigori T, Igarashi A, Noshiro H, Terashima M, Uyama I (2022) Three-year outcomes of robotic gastrectomy versus laparoscopic gastrectomy for the treatment of clinical stage I/II gastric cancer: a multi-institutional retrospective comparative study. Surg Endosc. https://doi.org/10.1007/s00464-022-09802-w

    Article  Google Scholar 

  9. Uyama I, Kanaya S, Ishida Y, Inaba K, Suda K, Satoh S (2012) Novel integrated robotic approach for suprapancreatic D2 nodal dissection for treating gastric cancer: technique and initial experience. World J Surg 36:331–337

    Article  Google Scholar 

  10. Kikuchi K, Suda K, Shibasaki S, Tanaka T, Uyama I (2021) Challenges in improving the minimal invasiveness of the surgical treatment for gastric cancer using robotic technology. Ann Gastroenterol Surg 5:604–613

    Article  PubMed  PubMed Central  Google Scholar 

  11. Japan Esophageal S (2017) Japanese classification of esophageal cancer, 11th edition: part I. Esophagus 14:1–36

    Article  Google Scholar 

  12. Kitagawa Y, Uno T, Oyama T, Kato K, Kato H, Kawakubo H, Kawamura O, Kusano M, Kuwano H, Takeuchi H, Toh Y, Doki Y, Naomoto Y, Nemoto K, Booka E, Matsubara H, Miyazaki T, Muto M, Yanagisawa A, Yoshida M (2019) Esophageal cancer practice guidelines 2017 edited by the Japan Esophageal Society: part 1. Esophagus 16:1–24

    Article  PubMed  Google Scholar 

  13. Kitagawa Y, Uno T, Oyama T, Kato K, Kato H, Kawakubo H, Kawamura O, Kusano M, Kuwano H, Takeuchi H, Toh Y, Doki Y, Naomoto Y, Nemoto K, Booka E, Matsubara H, Miyazaki T, Muto M, Yanagisawa A, Yoshida M (2019) Esophageal cancer practice guidelines 2017 edited by the Japan Esophageal Society: part 2. Esophagus 16:25–43

    Article  PubMed  Google Scholar 

  14. Japan Esophageal S (2017) Japanese classification of esophageal cancer, 11th edition: part II and III. Esophagus 14:37–65

    Article  Google Scholar 

  15. Shibasaki S, Suda K, Kadoya S, Ishida Y, Nakauchi M, Nakamura K, Akimoto S, Tanaka T, Kikuchi K, Inaba K, Uyama I (2022) The safe performance of robotic gastrectomy by second-generation surgeons meeting the operating surgeon’s criteria in the Japan Society for Endoscopic Surgery guidelines. Asian J Endosc Surg 15:70–81

    Article  PubMed  Google Scholar 

  16. Mori T, Kimura T, Kitajima M (2010) Skill accreditation system for laparoscopic gastroenterologic surgeons in Japan. Minim Invasive Ther Allied Technol 19:18–23

    Article  PubMed  Google Scholar 

  17. Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240:205–213

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shibasaki S, Suda K, Nakauchi M, Kikuchi K, Kadoya S, Ishida Y, Inaba K, Uyama I (2017) Robotic valvuloplastic esophagogastrostomy using double flap technique following proximal gastrectomy: technical aspects and short-term outcomes. Surg Endosc 31:4283–4297

    Article  PubMed  Google Scholar 

  19. Matsuo K, Shibasaki S, Suzuki K, Serizawa A, Akimoto S, Nakauchi M, Tanaka T, Inaba K, Uyama I, Suda K (2022) Efficacy of minimally invasive proximal gastrectomy followed by valvuloplastic esophagogastrostomy using the double flap technique in preventing reflux oesophagitis. Surg Endosc. https://doi.org/10.1007/s00464-022-09840-4,Dec272022

    Article  PubMed  Google Scholar 

  20. Goto A, Tanaka T, Shibasaki S, Nakauchi M, Nakamura K, Akimoto S, Kikuchi K, Inaba K, Uyama I, Suda K (2023) Circular-stapled esophagogastrostomy using the keyhole procedure after radical esophagectomy for esophageal cancer. Esophagus 20:63–71

    Article  PubMed  Google Scholar 

  21. Cuesta MA, Weijs TJ, Bleys RL, van Hillegersberg R, van Berge Henegouwen MI, Gisbertz SS, Ruurda JP, Straatman J, Osugi H, van der Peet DL (2015) A new concept of the anatomy of the thoracic oesophagus: the meso-oesophagus. Observational study during thoracoscopic esophagectomy. Surg Endosc 29:2576–2582

    Article  PubMed  Google Scholar 

  22. Tokairin Y, Nakajima Y, Kawada K, Hoshino A, Okada T, Ryotokuji T, Okuda M, Kume Y, Kawamura Y, Yamaguchi K, Nagai K, Akita K, Kinugasa Y (2018) Histological study of the thin membranous structure made of dense connective tissue around the esophagus in the upper mediastinum. Esophagus 15:272–280

    Article  PubMed  Google Scholar 

  23. Fujiwara H, Kanamori J, Nakajima Y, Kawano T, Miura A, Fujita T, Akita K, Daiko H (2019) An anatomical hypothesis: a “concentric-structured model” for the theoretical understanding of the surgical anatomy in the upper mediastinum required for esophagectomy with radical mediastinal lymph node dissection. Dis Esophagus. https://doi.org/10.1093/dote/doy119

    Article  PubMed  Google Scholar 

  24. Tsunoda S, Shinohara H, Kanaya S, Okabe H, Tanaka E, Obama K, Hosogi H, Hisamori S, Sakai Y (2020) Mesenteric excision of upper esophagus: a concept for rational anatomical lymphadenectomy of the recurrent laryngeal nodes in thoracoscopic esophagectomy. Surg Endosc 34:133–141

    Article  PubMed  Google Scholar 

  25. Puntambekar S, Kenawadekar R, Kumar S, Joshi S, Agarwal G, Reddy S, Mallik J (2015) Robotic transthoracic esophagectomy. BMC Surg 15:47

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang Y, Zhang X, Li B, Hua R, Yang Y, He Y, Ye B, Guo X, Sun Y, Li Z (2020) Short- and mid-term outcomes of robotic versus thoraco-laparoscopic McKeown esophagectomy for squamous cell esophageal cancer: a propensity score-matched study. Dis Esophagus. https://doi.org/10.1093/dote/doz080

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kingma BF, Grimminger PP, van der Sluis PC, van Det MJ, Kouwenhoven EA, Chao YK, Tsai CY, Fuchs HF, Bruns CJ, Sarkaria IS, Luketich JD, Haveman JW, van Etten B, Chiu PW, Chan SM, Rouanet P, Mourregot A, Holzen JP, Sallum RA, Cecconello I, Egberts JH, Benedix F, van Berge Henegouwen MI, Gisbertz SS, Perez D, Jansen K, Hubka M, Low DE, Biebl M, Pratschke J, Turner P, Pursnani K, Chaudry A, Smith M, Mazza E, Strignano P, Ruurda JP, van Hillegersberg R, Group US (2020) Worldwide techniques and outcomes in robot-assisted minimally invasive esophagectomy (RAMIE): results from the multicenter international registry. Ann Surg. https://doi.org/10.1097/SLA.0000000000004550

    Article  Google Scholar 

  28. van der Sluis PC, Ruurda JP, Verhage RJ, van der Horst S, Haverkamp L, Siersema PD, Borel Rinkes IH, Ten Kate FJ, van Hillegersberg R (2015) Oncologic long-term results of robot-assisted minimally invasive thoraco-laparoscopic esophagectomy with two-field lymphadenectomy for esophageal cancer. Ann Surg Oncol 22(Suppl 3):S1350–S1356

    Article  PubMed  Google Scholar 

  29. Yang Y, Li B, Yi J, Hua R, Chen H, Tan L, Li H, He Y, Guo X, Sun Y, Yu B, Li Z (2022) Robot-assisted versus conventional minimally invasive esophagectomy for resectable esophageal squamous cell carcinoma: early results of a multicenter randomized controlled trial: the RAMIE trial. Ann Surg 275:646–653

    Article  PubMed  Google Scholar 

  30. van der Sluis PC, van der Horst S, May AM, Schippers C, Brosens LAA, Joore HCA, Kroese CC, Haj Mohammad N, Mook S, Vleggaar FP, Borel Rinkes IHM, Ruurda JP, van Hillegersberg R (2019) Robot-assisted minimally invasive thoracolaparoscopic esophagectomy versus open transthoracic esophagectomy for resectable esophageal cancer: a randomized controlled trial. Ann Surg 269:621–630

    Article  PubMed  Google Scholar 

  31. Akiyama H, Tsurumaru M, Udagawa H, Kajiyama Y (1994) Radical lymph node dissection for cancer of the thoracic esophagus. Ann Surg 220:364–372 (discussion 372–363)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park SY, Kim DJ, Yu WS, Jung HS (2016) Robot-assisted thoracoscopic esophagectomy with extensive mediastinal lymphadenectomy: experience with 114 consecutive patients with intrathoracic esophageal cancer. Dis Esophagus 29:326–332

    Article  CAS  Google Scholar 

  33. Fujita T, Sato K, Ozaki A, Akutsu T, Fujiwara H, Kojima T, Daiko H (2022) Propensity-matched analysis of the short-term outcome of robot-assisted minimally invasive esophagectomy versus conventional thoracoscopic esophagectomy in thoracic esophageal cancer. World J Surg. https://doi.org/10.1007/s00268-022-06567-0

    Article  PubMed  Google Scholar 

  34. Wong IYH, Zhang RQ, Tsang RKY, Kwok JYY, Wong CLY, Chan DKK, Chan FSY, Law SYK (2021) Improving outcome of superior mediastinal lymph node dissection during esophagectomy: a novel approach combining continuous and intermittent recurrent laryngeal nerve monitoring. Ann Surg 274:736–742

    Article  PubMed  Google Scholar 

  35. Yuda M, Nishikawa K, Ishikawa Y, Takahashi K, Kurogochi T, Tanaka Y, Matsumoto A, Tanishima Y, Mitsumori N, Ikegami T (2022) Intraoperative nerve monitoring during esophagectomy reduces the risk of recurrent laryngeal nerve palsy. Surg Endosc 36:3957–3964

    Article  PubMed  Google Scholar 

  36. Zhao L, He J, Qin Y, Liu H, Li S, Han Z, Li L (2022) Application of intraoperative nerve monitoring for recurrent laryngeal nerves in minimally invasive McKeown esophagectomy. Dis Esophagus. https://doi.org/10.1093/dote/doab080

    Article  PubMed  Google Scholar 

  37. Wang X, Guo H, Hu Q, Ying Y, Chen B (2021) Efficacy of intraoperative recurrent laryngeal nerve monitoring during thoracoscopic esophagectomy for esophageal cancer: a systematic review and meta-analysis. Front Surg 8:773579

    Article  PubMed  PubMed Central  Google Scholar 

  38. van Workum F, Verstegen MHP, Klarenbeek BR, Bouwense SAW, van Berge Henegouwen MI, Daams F, Gisbertz SS, Hannink G, Haveman JW, Heisterkamp J, Jansen W, Kouwenhoven EA, van Lanschot JJB, Nieuwenhuijzen GAP, van der Peet DL, Polat F, Ubels S, Wijnhoven BPL, Rovers MM, Rosman C, Group Icr (2021) Intrathoracic vs cervical anastomosis after totally or hybrid minimally invasive esophagectomy for esophageal cancer: a randomized clinical trial. JAMA Surg 156:601–610

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank MARUZEN-YUSHODO Co., Ltd. (https://kw.maruzen.co.jp/kousei-honyaku/) for the English language editing.

Funding

This work was not supported by any grants or funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have fully satisfied the ICMJE authorship criteria as detailed in the following: Study design: MN, SS, IU, and KS; Data collection: MN, SS, AS, KS, and TT; Statistical analysis and interpretation of results: MN, SS, SA, KI, and KS; Drafting of the manuscript: MN, SS, and KS; Critical revision of the manuscript for important intellectual content: IU and KS. All authors have read and approved the final manuscript and are accountable for all aspects of the work, particularly in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Koichi Suda.

Ethics declarations

Disclosures

Ichiro Uyama has received lecture fees from Intuitive Surgical, Inc., outside of the submitted work. Ichiro Uyama have been funded by Medicaroid, Inc. in relation to the Collaborative Laboratory for Research and Development in Advanced Surgical Technology, Fujita Health University. Koichi Suda has been funded by Sysmex, Co. in relation to the Collaborative Laboratory for Research and Development in Advanced Surgical Intelligence, Fujita Health University, and has also received advisory fees from Medicaroid, Inc., outside of the submitted work. Masaya Nakauchi, Susumu Shibasaki, Kazumitsu Suzuki, Akiko Serizawa, Shingo Akimoto, Tsuyoshi Tanaka, Kazuki Inaba, Ichiro Uyama, and Koichi Suda have no conflicts of interest or financial ties to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

464_2023_10437_MOESM1_ESM.jpeg

Supplementary file1 (JPEG 124 KB)—Three independent dissectible layers were regarded as landmarks to mobilize the esophagus: (1) layer along the aortic adventitia (blue triangle), (2) layer along the adipose tissue surrounding the thoracic duct (yellow triangle), and (3) interpleural ligament (Morosow’s ligament) (red triangle).

464_2023_10437_MOESM2_ESM.jpeg

Supplementary file2 (JPEG 88 KB)—The dorsal aspect of the upper esophagus was mobilized on the interpleural fascia in a caudocranial direction beyond the thoracic inlet. Then, the interpleural fascia was dissected from the adipose tissue surrounding the thoracic duct along the left aspect of the upper esophagus, and the dorsolateral aspect of the left upper mediastinal periesophageal tissue was sufficiently mobilized (green area).

Supplementary file3 (MP4 273392 KB)—Surgical procedures of the outermost layer-oriented approach.

464_2023_10437_MOESM4_ESM.jpeg

Supplementary file4 (JPEG 121 KB)—Outermost layer in the concentric-structured model. The outermost layer is shown in the purple line and dividing line between station 106rec and 106pre (green arrow).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakauchi, M., Shibasaki, S., Suzuki, K. et al. Robotic esophagectomy with outermost layer-oriented dissection for esophageal cancer: technical aspects and a retrospective review of a single-institution database. Surg Endosc 37, 8879–8891 (2023). https://doi.org/10.1007/s00464-023-10437-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-023-10437-8

Keywords

Navigation