Skip to main content
Log in

Robotic pancreatoduodenectomy: trends in technique and training challenges

  • Original Article
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

More complex cases are being performed robotically. This study aims to characterize trends in robotic pancreatoduodenectomy (RPD) over time and assess opportunities for advanced trainees.

Methods

Using the ACS-NSQIP database from 2014 to 2019, PD cases were characterized by operative approach (open-OPN, laparoscopic-LAP, robotic-ROB). Proficiency and postoperative outcomes were described by approach over time.

Results

24,268 PDs were identified, with the ROB approach increasing from 2.8% to 7.5%. Unplanned conversion increased over time for LAP (27.7–39.0%, p = 0.003) but was unchanged for ROB cases (14.8–14.7%, p = 0.257). Morbidity increased for OPN PD (35.5–36.8%, p = 0.041) and decreased for ROB PD (38.7–30.3%, p = 0.010). Mean LOS was lower in ROB than LAP/OPN (9.5 vs. 10.9 vs. 10.9 days, p < 0.00001). Approximately, 100 AHPBA, SSO, and ASTS fellows are being trained each year in North America; however, only about 5 RPDs are available per trainee per year which is far below that recommended to achieve proficiency.

Conclusion

Over a 6-year period, a significant increase was observed in the use of RPD without a concomitant increase in conversion rates. RPD was associated with decreased morbidity and length of stay. Despite this shift, the number of cases being performed is not adequate for all fellows to achieve proficiency before graduation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the American College of Surgeons. Restrictions apply to the availability of these data, which were used under license for this study. Data are available for request at https://www.facs.org/quality-programs/acs-nsqip/participant-use/puf-form with the permission of the American College of Surgeons.

References

  1. Hoehn RS, Nassour I, Adam MA, Winters S, Paniccia A, Zureikat AH (2021) National trends in robotic pancreas surgery. J Gastrointest Surg 25(4):983–990. https://doi.org/10.1007/s11605-020-04591-w

    Article  Google Scholar 

  2. Hogg ME, Besselink MG, Clavien PA et al (2017) Training in minimally invasive pancreatic resections: a paradigm shift away from “See one, Do one, Teach one.” HPB 19(3):234–245. https://doi.org/10.1016/j.hpb.2017.01.016

    Article  Google Scholar 

  3. Mark Knab L, Zenati MS, Khodakov A et al (2018) Evolution of a novel robotic training curriculum in a complex general surgical oncology fellowship. Ann Surg Oncol 25(12):3445–3452. https://doi.org/10.1245/s10434-018-6686-0

    Article  CAS  Google Scholar 

  4. Nota CL, Zwart MJ, Fong Y et al (2017) Developing a robotic pancreas program: the Dutch experience. J Vis Surg 3:106. https://doi.org/10.21037/jovs.2017.07.02

    Article  Google Scholar 

  5. Schmidt CR, Harris BR, Musgrove KA et al (2021) Formal robotic training diminishes the learning curve for robotic pancreatoduodenectomy: Implications for new programs in complex robotic surgery. J Surg Oncol 123(2):375–380. https://doi.org/10.1002/jso.26284

    Article  Google Scholar 

  6. Napoli N, Kauffmann EF, Palmeri M et al (2016) The learning curve in robotic pancreaticoduodenectomy. Dig Surg 33(4):299–307. https://doi.org/10.1159/000445015

    Article  CAS  Google Scholar 

  7. Shyr BU, Chen SC, Shyr YM, Wang SE (2018) Learning curves for robotic pancreatic surgery-from distal pancreatectomy to pancreaticoduodenectomy. Medicine 97(45):e13000. https://doi.org/10.1097/MD.0000000000013000

    Article  Google Scholar 

  8. Boone BA, Zenati M, Hogg ME et al (2015) Assessment of quality outcomes for robotic pancreaticoduodenectomy: identification of the learning curve. JAMA Surg 150(5):416–422. https://doi.org/10.1001/jamasurg.2015.17

    Article  Google Scholar 

  9. Tzeng CW, Cooper AB, Vauthey JN, Curley SA, Aloia TA (2014) Predictors of morbidity and mortality after hepatectomy in elderly patients: analysis of 7621 NSQIP patients. HPB 16(5):459–468. https://doi.org/10.1111/hpb.12155

    Article  Google Scholar 

  10. Bassi C, Marchegiani G, Dervenis C et al (2017) The 2016 update of the International Study Group (ISGPS) definition and grading of postoperative pancreatic fistula: 11 Years After. Surgery 161(3):584–591. https://doi.org/10.1016/j.surg.2016.11.014

    Article  Google Scholar 

  11. Beane JD, Borrebach JD, Zureikat AH, Kilbane EM, Thompson VM, Pitt HA (2019) Optimal pancreatic surgery: are we making progress in North America? Ann Surg. https://doi.org/10.1097/SLA.0000000000003628

    Article  Google Scholar 

  12. https://www.surgonc.org/fellows/surgical-oncology-fellowships/. Accessed 1 Feb 2021

  13. https://www.ahpba.org/education-training/. Accessed 1 Feb 2021

  14. https://asts.org/training/transplant-accreditation-certification-council. Accessed 1 Feb 2021

  15. Zimmerman AM, Roye DG, Charpentier KP (2018) A comparison of outcomes between open, laparoscopic and robotic pancreaticoduodenectomy. HPB 20(4):364–369. https://doi.org/10.1016/j.hpb.2017.10.008

    Article  Google Scholar 

  16. Gleeson EM, Pitt HA, Mackay TM et al (2021) Failure to rescue after pancreatoduodenectomy: a transatlantic analysis. Ann Surg 274(3):459–466. https://doi.org/10.1097/SLA.0000000000005000

    Article  Google Scholar 

  17. Kim HS, Han Y, Kang JS et al (2018) Comparison of surgical outcomes between open and robot-assisted minimally invasive pancreaticoduodenectomy. J Hepatobiliary Pancreat Sci 25(2):142–149. https://doi.org/10.1002/jhbp.522

    Article  Google Scholar 

  18. Jin J, Yin SM, Weng Y et al (2022) Robotic versus open pancreaticoduodenectomy with vascular resection for pancreatic ductal adenocarcinoma: surgical and oncological outcomes from pilot experience. Langenbecks Arch Surg. https://doi.org/10.1007/s00423-021-02364-w

    Article  Google Scholar 

  19. Palanivelu C, Senthilnathan P, Sabnis SC et al (2017) Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours. Br J Surg 104(11):1443–1450. https://doi.org/10.1002/bjs.10662

    Article  CAS  Google Scholar 

  20. Poves I, Burdío F, Morató O et al (2018) Comparison of perioperative outcomes between laparoscopic and open approach for pancreatoduodenectomy: the PADULAP Randomized Controlled Trial. Ann Surg 268(5):731–739. https://doi.org/10.1097/SLA.0000000000002893

    Article  Google Scholar 

  21. Kendrick ML, Cusati D (2010) Total laparoscopic pancreaticoduodenectomy: feasibility and outcome in an early experience. Arch Surg 145(1):19–23. https://doi.org/10.1001/archsurg.2009.243

    Article  Google Scholar 

  22. Kantor O, Pitt HA, Talamonti MS et al (2018) Minimally invasive pancreatoduodenectomy: is the incidence of clinically relevant postoperative pancreatic fistula comparable to that after open pancreatoduodenectomy? Surgery 163(3):587–593. https://doi.org/10.1016/j.surg.2017.12.001

    Article  Google Scholar 

  23. Gall TMH, Alrawashdeh W, Soomro N, White S, Jiao LR (2020) Shortening surgical training through robotics: randomized clinical trial of laparoscopic versus robotic surgical learning curves. BJS Open. https://doi.org/10.1002/bjs5.50353

    Article  Google Scholar 

  24. van Hilst J, de Rooij T, Bosscha K et al (2019) Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol Hepatol 4(3):199–207. https://doi.org/10.1016/S2468-1253(19)30004-4

    Article  Google Scholar 

  25. Lane T (2018) A short history of robotic surgery. Ann R Coll Surg Engl 100(6_sup):5–7. https://doi.org/10.1308/rcsann.supp1.5

    Article  Google Scholar 

  26. Giulianotti PC, Coratti A, Angelini M et al (2003) Robotics in general surgery: personal experience in a large community hospital. Arch Surg 138(7):777–784. https://doi.org/10.1001/archsurg.138.7.777

    Article  Google Scholar 

  27. Chen K, Pan Y, Liu XL et al (2017) Minimally invasive pancreaticoduodenectomy for periampullary disease: a comprehensive review of literature and meta-analysis of outcomes compared with open surgery. BMC Gastroenterol 17(1):120. https://doi.org/10.1186/s12876-017-0691-9

    Article  Google Scholar 

  28. Aiolfi A, Lombardo F, Bonitta G, Danelli P, Bona D (2021) Systematic review and updated network meta-analysis comparing open, laparoscopic, and robotic pancreaticoduodenectomy. Updates Surg 73(3):909–922. https://doi.org/10.1007/s13304-020-00916-1

    Article  Google Scholar 

  29. Kamarajah SK, Bundred J, Marc OS et al (2020) Robotic versus conventional laparoscopic pancreaticoduodenectomy a systematic review and meta-analysis. Eur J Surg Oncol 46(1):6–14. https://doi.org/10.1016/j.ejso.2019.08.007

    Article  Google Scholar 

  30. Zureikat AH, Borrebach J, Pitt HA et al (2017) Minimally invasive hepatopancreatobiliary surgery in North America: an ACS-NSQIP analysis of predictors of conversion for laparoscopic and robotic pancreatectomy and hepatectomy. HPB 19(7):595–602. https://doi.org/10.1016/j.hpb.2017.03.004

    Article  Google Scholar 

  31. van Hilst J, de Graaf N, Abu Hilal M, Besselink MG (2021) The landmark series: minimally invasive pancreatic resection. Ann Surg Oncol 28(3):1447–1456. https://doi.org/10.1245/s10434-020-09335-3

    Article  Google Scholar 

  32. Sheetz KH, Claflin J, Dimick JB (2020) Trends in the adoption of robotic surgery for common surgical procedures. JAMA Netw Open 3(1):e1918911. https://doi.org/10.1001/jamanetworkopen.2019.18911

    Article  Google Scholar 

  33. Vining CC, Hogg ME (2020) How to train and evaluate minimally invasive pancreas surgery. J Surg Oncol 122(1):41–48. https://doi.org/10.1002/jso.25912

    Article  Google Scholar 

  34. Madion MP, Kastenmeier A, Goldblatt MI, Higgins RM (2022) Robotic surgery training curricula: prevalence, perceptions, and educational experiences in general surgery residency programs. Surg Endosc. https://doi.org/10.1007/s00464-021-08930-z

    Article  Google Scholar 

  35. Ramirez Barriga M, Rojas A, Roggin KK, Talamonti MS, Hogg ME (2022) Development of a two-week dedicated robotic surgery curriculum for general surgery residents. J Surg Educ. https://doi.org/10.1016/j.jsurg.2022.02.015

    Article  Google Scholar 

  36. Radi I, Tellez JC, Alterio RE et al (2022) Feasibility, effectiveness and transferability of a novel mastery-based virtual reality robotic training platform for general surgery residents. Surg Endosc. https://doi.org/10.1007/s00464-022-09106-z

    Article  Google Scholar 

  37. Moran GW, Margolin EJ, Wang CN, DeCastro GJ (2022) Using gamification to increase resident engagement in surgical training: our experience with a robotic surgery simulation league. Am J Surg. https://doi.org/10.1016/j.amjsurg.2022.01.020

    Article  Google Scholar 

  38. Liounakos JI, Basil GW, Urakawa H, Wang MY (2021) Intraoperative image guidance for endoscopic spine surgery. Ann Transl Med 9(1):92. https://doi.org/10.21037/atm-20-1119

    Article  Google Scholar 

  39. Ma AK, Daly M, Qiu J et al (2017) Intraoperative image guidance in transoral robotic surgery: a pilot study. Head Neck 39(10):1976–1983. https://doi.org/10.1002/hed.24805

    Article  Google Scholar 

  40. van der Poel HG, Buckle T, Brouwer OR, Valdés Olmos RA, van Leeuwen FW (2011) Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol 60(4):826–833. https://doi.org/10.1016/j.eururo.2011.03.024

    Article  Google Scholar 

  41. Baker EH, Dowden JE, Cochran AR et al (2016) Qualities and characteristics of successfully matched North American HPB surgery fellowship candidates. HPB 18(5):479–484. https://doi.org/10.1016/j.hpb.2015.12.001

    Article  Google Scholar 

  42. Warner SG, Alseidi AA, Hong J, Pawlik TM, Minter RM (2015) What to expect when you’re expecting a hepatopancreatobiliary surgeon: self-reported experiences of HPB surgeons from different training pathways. HPB 17(9):785–790. https://doi.org/10.1111/hpb.12430

    Article  Google Scholar 

  43. DAngelica MI, Chapman WC (2016) HPB surgery: the specialty is here to stay, but the training is in evolution. Ann Surg Oncol 23(7):2123–2125. https://doi.org/10.1245/s10434-016-5230-3

    Article  Google Scholar 

  44. Sweigert PJ, Eguia E, Baker MS et al (2020) Assessment of textbook oncologic outcomes following pancreaticoduodenectomy for pancreatic adenocarcinoma. J Surg Oncol 121(6):936–944. https://doi.org/10.1002/jso.25861

    Article  Google Scholar 

Download references

Funding

This study was not funded by an outside source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. August.

Ethics declarations

Disclosures

Drs. Catherine Davis, Miral Grandhi, Victor Gazivoda, Alissa Greenbaum, Timothy Kennedy, Russell Langan, H. Richard Alexander, Henry Pitt, and David August have no disclosures.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, C.H., Grandhi, M.S., Gazivoda, V.P. et al. Robotic pancreatoduodenectomy: trends in technique and training challenges. Surg Endosc 37, 266–273 (2023). https://doi.org/10.1007/s00464-022-09469-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-022-09469-3

Keywords

Navigation