Skip to main content
Log in

Robotically assisted augmented reality system for identification of targeted lymph nodes in laparoscopic gynecological surgery: a first step toward the identification of sentinel node

Augmented reality in gynecological surgery

  • Original Article
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

To prove feasibility of multimodal and temporal fusion of laparoscopic images with preoperative computed tomography scans for a real-time in vivo-targeted lymph node (TLN) detection during minimally invasive pelvic lymphadenectomy and to validate and enable such guidance for safe and accurate sentinel lymph node dissection, including anatomical landmarks in an experimental model.

Methods

A measurement campaign determined the most accurate tracking system (UR5-Cobot versus NDI Polaris). The subsequent interventions on two pigs consisted of an identification of artificial TLN and anatomical landmarks without and with augmented reality (AR) assistance. The AR overlay on target structures was quantitatively evaluated. The clinical relevance of our system was assessed via a questionnaire completed by experienced and trainee surgeons.

Results

An AR-based robotic assistance system that performed real-time multimodal and temporal fusion of laparoscopic images with preoperative medical images was developed and tested. It enabled the detection of TLN and their surrounding anatomical structures during pelvic lymphadenectomy. Accuracy of the CT overlay was > 90%, with overflow rates < 6%. When comparing AR to direct vision, we found that scores were significatively higher in AR for all target structures. AR aided both experienced surgeons and trainees, whether it was for TLN, ureter, or vessel identification.

Conclusion

This computer-assisted system was reliable, safe, and accurate, and the present achievements represent a first step toward a clinical study.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Concin N, Matias-Guiu X, Vergote I, Cibula D, Mirza MR, Marnitz S, Ledermann J, Bosse T, Chargari C, Fagotti A, Fotopoulou C, Gonzalez Martin A, Lax S, Lorusso D, Marth C, Morice P, Nout RA, O’Donnell D, Querleu D, Raspollini MR, Sehouli J, Sturdza A, Taylor A, Westermann A, Wimberger P, Colombo N, Planchamp F, Creutzberg CL (2021) ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int J Gynecol Cancer 31(1):12–39

    Article  PubMed  Google Scholar 

  2. Rozenholc A, Samouelian V, Warkus T, Gauthier P, Provencher D, Sauthier P, Gauthier F, Drakopoulos P, Cormier B (2019) Green versus blue: Randomized controlled trial comparing indocyanine green with methylene blue for sentinel lymph node detection in endometrial cancer. Gynecol Oncol 153(3):500–504

    Article  CAS  PubMed  Google Scholar 

  3. Tucker K, Staley SA, Gehrig PA, Soper JT, Boggess JF, Ivanova A, Rossi E (2020) Defining the learning curve for successful staging with sentinel lymph node biopsy for endometrial cancer among surgeons at an academic institution. Int J Gynecol Cancer 30(3):346–351

    Article  PubMed  Google Scholar 

  4. Kim S, Ryu KJ, Min KJ, Lee S, Jung US, Hong JH, Song JY, Lee JK, Lee NW (2020) Learning curve for sentinel lymph node mapping in gynecologic malignancies. J Surg Oncol 121(4):599–604

    Article  PubMed  Google Scholar 

  5. Thomaier L, Jager L, Stone R, Wethington S, Fader A, Tanner EJ (2019) Risk of empty lymph node packets in sentinel lymph node mapping for endometrial cancer using indocyanine green. Int J Gynecol Cancer 29(3):513–517

    Article  PubMed  Google Scholar 

  6. Geppert B, Lönnerfors C, Bollino M, Persson J (2017) Sentinel lymph node biopsy in endometrial cancer-feasibility, safety and lymphatic complications. Gynecol Oncol 148(3):491–498

    Article  PubMed  Google Scholar 

  7. Bartoli A, Collins T, Bourdel N, Canis M (2012) Computer assisted minimally invasive surgery: is medical computer vision the answer to improving laparosurgery? Med Hypotheses 79(6):858–863

    Article  PubMed  Google Scholar 

  8. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the care and use of laboratory animals (8th edn). Laboratory Animals

  9. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412

    Article  PubMed  PubMed Central  Google Scholar 

  10. Prescott MJ, Lidster K (2017) Improving quality of science through better animal welfare: the NC3Rs strategy. Lab Anim (NY) 46:152–156

    Article  Google Scholar 

  11. R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. Accessed 2020

  12. Bourdel N, Collins T, Pizarro D, Bartoli A, Da Ines D, Perreira B, Canis M (2017) Augmented reality in gynecologic surgery: evaluation of potential benefits for myomectomy in an experimental uterine model. Surg Endosc 31(1):456–461

    Article  PubMed  Google Scholar 

  13. Chauvet P, Bourdel N, Calvet L, Magnin B, Teluob G, Canis M, Bartoli A (2020) Augmented reality with diffusion tensor imaging and tractography during laparoscopic myomectomies. J Minim Invasive Gynecol 27(4):973–976

    Article  PubMed  Google Scholar 

  14. Bourdel N, Collins T, Pizarro D, Debize C, Grémeau AS, Bartoli A, Canis M (2017) Use of augmented reality in laparoscopic gynecology to visualize myomas. Fertil Steril 107(3):737–739

    Article  PubMed  Google Scholar 

  15. Akladios C, Gabriele V, Agnus V, Martel-Billard C, Saadeh R, Garbin O, Lecointre L, Marescaux J (2020) Augmented reality in gynecologic laparoscopic surgery: development, evaluation of accuracy and clinical relevance of a device useful to identify ureters during surgery. Surg Endosc 34(3):1077–1087

    Article  PubMed  Google Scholar 

  16. Togami S, Kawamura T, Yanazume S, Kamio M, Kobayashi H (2020) Comparison of lymphoscintigraphy and single photon emission computed tomography with computed tomography (SPECT/CT) for sentinel lymph node detection in endometrial cancer. Int J Gynecol Cancer Off J Int Gynecol Cancer Soc 30(5):626–630

    Article  Google Scholar 

  17. Sahbai S, Taran F-A, Staebler A, Wallwiener D, la Fougère C, Brucker S, Dittmann H (2017) Sentinel lymph node mapping using SPECT/CT and gamma probe in endometrial cancer: an analysis of parameters affecting detection rate. Eur J Nucl Med Mol Imaging 44(9):1511–1519

    Article  CAS  PubMed  Google Scholar 

  18. Elisei F, Crivellaro C, Giuliani D, Dolci C, De Ponti E, Montanelli L, La Manna M, Guerra L, Arosio M, Landoni C, Buda A (2017) Sentinel-node mapping in endometrial cancer patients: comparing SPECT/CT, gamma-probe and dye. Ann Nucl Med 31(1):93–99

    Article  CAS  PubMed  Google Scholar 

  19. Naaman Y, Pinkas L, Roitman S, Ikher S, Oustinov N, Vaisbuch E, Yachnin A, Ben-Arie A (2016) The added value of SPECT/CT in sentinel lymph nodes mapping for endometrial carcinoma. Ann Surg Oncol 23(2):450–455

    Article  CAS  PubMed  Google Scholar 

  20. Cabrera S, Bebia V, Franco-Camps S, Forcada C, Villasboas-Rosciolesi D, Navales I, Pérez-Benavente A, Gil-Moreno A (2020) Technetium-99m-indocyanine green versus technetium-99m-methylene blue for sentinel lymph node biopsy in early-stage endometrial cancer. Int J Gynecol Cancer 30(3):311–317

    Article  PubMed  Google Scholar 

  21. Cabrera S, Barahona-Orpinell M, Almansa-González C, Padilla-Iserte P, Bebia V, Martí L, Tejerizo-García Á, Domingo S, Gil-Moreno A (2021) Combined use of ICG and technetium does not improve sentinel lymph node detection in endometrial cancer: results of the COMBITEC study. Gynecol Oncol 162(1):32–37

    Article  CAS  PubMed  Google Scholar 

  22. Sánchez-Izquierdo N, Vidal-Sicart S, Campos F, Torné A, Angeles MA, Migliorelli F, Munmany M, Saco A, Diaz-Feijoo B, Glickman A, Ordi J, Perissinotti A, Del Pino M, Paredes P (2021) Detection of the sentinel lymph node with hybrid tracer (ICG-[99mTc]Tc-albumin nanocolloid) in intermediate- and high-risk endometrial cancer: a feasibility study. EJNMMI Res 11(1):123

    Article  PubMed  PubMed Central  Google Scholar 

  23. KleinJan GH, Karakullukçu B, Klop WMC, Engelen T, van den Berg NS, van Leeuwen FWB (2017) Introducing navigation during melanoma-related sentinel lymph node procedures in the head-and-neck region. EJNMMI Res 7(1):65

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang R, Yang R, Lang Z, Wu B, Shao P, Liu P, Zhong X, Contreras CM, Xu RX (2021) Coaxial projective imaging for sentinel lymph node mapping in melanoma. JAAD Case Rep 15:46–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. von Niederhäusern PA, Pezold S, Nahum U, Seppi C, Nicolas G, Rissi M, Haerle SK, Cattin PC (2019) Augmenting camera images with gamma detector data: a novel approach to support sentinel lymph node biopsy. EJNMMI Phys 6(1):10

    Article  Google Scholar 

  26. Kavoussi LR, Moore RG, Adams JB, Partin AW (1995) Comparison o robotic versus human laparoscopic camera control. J Urol 154:2134–2136

    Article  CAS  PubMed  Google Scholar 

  27. Franco D, Abbou CC, Fagniez PL, Bras robotisé à commande vocale pour la chirurgie endoscopique, Recommandations du CEDIT (2000) ref 00.01.

  28. Bourdel N, Chauvet P, Calvet L, Magnin B, Bartoli A, Canis M (2019) Use of augmented reality in gynecologic surgery to visualize adenomyomas. J Minim Invasive Gynecol 26(6):1177–1180

    Article  PubMed  Google Scholar 

  29. Chauvet P, Collins T, Debize C, Novais-Gameiro L, Pereira B, Bartoli A, Canis M (2018) Augmented reality in a tumor resection model. Surg Endosc 32(3):1192–1201

    Article  PubMed  Google Scholar 

  30. Ward TM, Mascagni P, Madani A, Padoy N, Perretta S, Hashimoto DA (2021) Surgical data science and artificial intelligence for surgical education. J Surg Oncol 124(2):221–230

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the French state funds managed within the “Plan Investissements d’Avenir” and by the ANR (reference ANR-10-IAHU-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Lecointre.

Ethics declarations

Disclosures

Lise Lecointre, Juan Verde, Laurent Goffin, Aïna Venkatasamy, Barbara Seeliger, Massimo Lodi, Lee L Swanström, Chérif Akladios, and Benoît Gallix declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Supplementary file2 (MP4 284136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lecointre, L., Verde, J., Goffin, L. et al. Robotically assisted augmented reality system for identification of targeted lymph nodes in laparoscopic gynecological surgery: a first step toward the identification of sentinel node. Surg Endosc 36, 9224–9233 (2022). https://doi.org/10.1007/s00464-022-09409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-022-09409-1

Keywords

Navigation