Skip to main content

Advertisement

Log in

Comparison of intraocular pressure during laparoscopic totally extraperitoneal (TEP) versus transabdominal preperitoneal (TAPP) inguinal hernia repair

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Laparoscopic totally extraperitoneal (TEP) repair and transabdominal preperitoneal (TAPP) repair are standard laparoscopic procedures for inguinal hernia repair. Some evidence has shown that pneumoperitoneum can cause an increase in intraocular pressure (IOP) during surgery. This study aimed to compare intraoperative IOP following extraperitoneal CO2 insufflation with the TEP approach and intraperitoneal CO2 insufflation with the TAPP approach.

Methods

This study is a prospective cohort study. Patients who had inguinal hernias suitable for laparoscopic inguinal hernia repair were assigned to undergo the TEP or TAPP approach. We measured preoperative, intraoperative, and postoperative IOP. The IOP of the TEP and TAPP groups was evaluated using a t test. The relations between peak inspiratory pressure (PIP), mean arterial pressure (MAP), and end-tidal CO2 (EtCO2) were estimated using ANOVA. Univariate and multivariate analyses were performed to determine the factors associated with IOP.

Results

There were 50 patients in this study (TEP group n = 25, TAPP group n = 25). The change in intraoperative IOP from the preoperative measurement to the measurement after CO2 insufflation was not statistically significant in either the TEP or TAPP group (p value = 0.357). There was no significant difference in intraoperative IOP change between the TEP and TAPP groups. Intraoperative MAP and PIP were related to IOP, but intraoperative EtCO2 was not.

Conclusions

There was no significant intraoperative IOP change during laparoscopic inguinal hernia repair. Both the TEP and TAPP techniques can be performed safely without increasing intraoperative IOP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amato G, Agrusa A, Rodolico V, Puleio R, Di Buono G, Amodeo S et al (2016) Combined inguinal hernia in the elderly. Portraying the progression of hernia disease. Int J Surg 33(Suppl 1):S20–S29

    PubMed  Google Scholar 

  2. Chiu SL, Chu CL, Muo CH, Chen CL, Lan SJ (2016) The prevalence and the incidence of diagnosed open-angle glaucoma and diagnosed angle-closure glaucoma: changes from 2001 to 2010. J Glaucoma 25(5):e514–e519

    PubMed  Google Scholar 

  3. Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure B, BESs Study Group (2008) Risk factors for incident open-angle glaucoma: the barbados eye studies. Ophthalmology 115(1):85–93

    PubMed  Google Scholar 

  4. HerniaSurge Group (2018) International guidelines for groin hernia management. Hernia 22(1):1–165

    Google Scholar 

  5. Lee LA (2013) Perioperative visual loss and anesthetic management. Curr Opin Anaesthesiol 26(3):375–381

    PubMed  Google Scholar 

  6. Weber ED, Colyer MH, Lesser RL, Subramanian PS (2007) Posterior ischemic optic neuropathy after minimally invasive prostatectomy. J Neuroophthalmol 27(4):285–287

    PubMed  Google Scholar 

  7. Metwalli AR, Davis RG, Donovan JF (2004) Visual impairment after laparoscopic donor nephrectomy. J Endourol 18(9):888–890

    PubMed  Google Scholar 

  8. Seo KH, Kim YS, Joo J, Choi JW, Jeong HS, Chung SW (2018) Variation in intraocular pressure caused by repetitive positional changes during laparoscopic colorectal surgery: a prospective, randomized, controlled study comparing propofol and desflurane anesthesia. J Clin Monit Comput 32(6):1101–1109

    PubMed  Google Scholar 

  9. Adisa AO, Onakpoya OH, Adenekan AT, Awe OO (2016) Intraocular pressure changes with positioning during laparoscopy. JSLS. https://doi.org/10.4293/JSLS.2016.00078

    Article  PubMed  PubMed Central  Google Scholar 

  10. Karabayirli S, Cimen NK, Muslu B, Tenlik A, Gozdemir M, Sert H et al (2016) Effect of positive end-expiratory pressure administration on intraocular pressure in laparoscopic cholecystectomy: randomised controlled trial. Eur J Anaesthesiol 33(9):696–699

    PubMed  Google Scholar 

  11. Gordon MO, Kass MA (1999) The ocular hypertension treatment study: design and baseline description of the participants. Arch Ophthalmol 117(5):573–583

    CAS  PubMed  Google Scholar 

  12. Yoo YC, Shin S, Choi EK, Kim CY, Choi YD, Bai SJ (2014) Increase in intraocular pressure is less with propofol than with sevoflurane during laparoscopic surgery in the steep Trendelenburg position. Can J Anesth 61(4):322–329

    PubMed  Google Scholar 

  13. Grosso A, Ceruti P, Morino M, Marchini G, Amisano M, Fioretto M (2017) Comment on the paper by mondzelewski and colleagues: “Intraocular pressure during robotic-assisted laparoscopic procedures utilizing steep trendelenburg positioning.” J Glaucoma. 2015; 24 (6): 399–404. J Glaucoma 26(4):e166–e167

    PubMed  Google Scholar 

  14. Hwang JW, Oh AY, Hwang DW, Jeon YT, Kim YB, Park SH (2013) Does intraocular pressure increase during laparoscopic surgeries? It depends on anesthetic drugs and the surgical position. Surg Laparosc Endosc Percutaneous Tech 23(2):229–232

    Google Scholar 

  15. Rauser P, Mrazova M, Crha M, Urbanova L, Vychodilova M (2017) Influence of capnoperitoneum on intraocular pressure in spontaneously breathing dogs undergoing ovariectomy. Vet Med 62(12):661–667

    CAS  Google Scholar 

  16. Nuzzi R, Tridico F (2016) Ocular complications in laparoscopic surgery: review of existing literature and possible prevention and treatment. Semin Ophthalmol 31(6):584–592

    PubMed  Google Scholar 

  17. Firl KC, Montezuma SR (2016) Chronic post-operative iris prosthesis endophthalmitis in a patient with traumatic aniridia: a case report. BMC Ophthalmol 16(1):197

    PubMed  PubMed Central  Google Scholar 

  18. Demasi CL, Porpiglia F, Tempia A, D’Amelio S (2018) Ocular blood flow in steep Trendelenburg positioning during robotic-assisted radical prostatectomy. Eur J Ophthalmol 28(3):333–338

    PubMed  Google Scholar 

  19. Olympio MA (2013) Postoperative visual loss after robotic pelvic surgery. BJU Int 112(8):1060–1061

    PubMed  Google Scholar 

  20. Greenway F, Tulloch I, Laban J (2018) Consent for post-operative visual loss in prone spinal surgery: aligning clinical practice with legal standards. Br J Neurosurg 32(6):604–609

    PubMed  Google Scholar 

  21. Stoffelns BM (2009) Decreased visual acuity and loss of field of vision after inguinal hernia surgery. Ophthalmologe 106(5):448–451

    CAS  PubMed  Google Scholar 

  22. He Z, Vingrys AJ, Armitage JA, Bui BV (2011) The role of blood pressure in glaucoma. Clin Exp Optom 94(2):133–149

    PubMed  Google Scholar 

  23. Klein BE, Klein R, Knudtson MD (2005) Intraocular pressure and systemic blood pressure: longitudinal perspective: the beaver dam eye study. Br J Ophthalmol 89(3):284–287

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Dielemans I, Vingerling JR, Algra D, Hofman A, Grobbee DE, de Jong PT (1995) Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam study. Ophthalmology 102(1):54–60

    CAS  PubMed  Google Scholar 

  25. Tielsch JM, Katz J, Sommer A, Quigley HA, Javitt JC (1995) Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol 113(2):216–221

    CAS  PubMed  Google Scholar 

  26. Leske MC, Connell AM, Wu SY, Hyman LG, Schachat AP (1995) Risk factors for open-angle glaucoma. The barbados eye study. Arch Ophthalmol 113(7):918–924

    CAS  PubMed  Google Scholar 

  27. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A (2000) Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology 107(7):1287–1293

    CAS  PubMed  Google Scholar 

  28. Graham SL, Drance SM (1999) Nocturnal hypotension: role in glaucoma progression. Surv Ophthalmol 43(Suppl 1):S10–S16

    PubMed  Google Scholar 

  29. Kaiser HJ, Flammer J (1991) Systemic hypotension: a risk factor for glaucomatous damage? Ophthalmologica 203(3):105–108

    CAS  PubMed  Google Scholar 

  30. Collignon N, Dewe W, Guillaume S, Collignon-Brach J (1998) Ambulatory blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and its relationship with disease progression. Int Ophthalmol 22(1):19–25

    CAS  PubMed  Google Scholar 

  31. Barbosa-Breda J, Abegao-Pinto L, Van Keer K, Jesus DA, Lemmens S, Vandewalle E et al (2019) Heterogeneity in arterial hypertension and ocular perfusion pressure definitions: towards a consensus on blood pressure-related parameters for glaucoma studies. Acta Ophthalmol 97(4):e487–e492

    PubMed  Google Scholar 

  32. Costa VP, Arcieri ES, Harris A (2009) Blood pressure and glaucoma. Br J Ophthalmol 93(10):1276–1282

    CAS  PubMed  Google Scholar 

  33. Mori K, Ando F, Nomura H, Sato Y, Shimokata H (2000) Relationship between intraocular pressure and obesity in Japan. Int J Epidemiol 29(4):661–666

    CAS  PubMed  Google Scholar 

  34. Karadag R, Arslanyilmaz Z, Aydin B, Hepsen IF (2012) Effects of body mass index on intraocular pressure and ocular pulse amplitude. Int J Ophthalmol 5(5):605–608

    PubMed  PubMed Central  Google Scholar 

  35. Jang HD, Kim DH, Han K, Ha SG, Kim YH, Kim JW et al (2015) Relationship between intraocular pressure and parameters of obesity in Korean adults: the 2008–2010 Korea national health and nutrition examination survey. Curr Eye Res 40(10):1008–1017

    PubMed  Google Scholar 

  36. Cohen E, Kramer M, Shochat T, Goldberg E, Garty M, Krause I (2016) Relationship between body mass index and intraocular pressure in men and women: a population-based study. J Glaucoma 25(5):e509–e513

    PubMed  Google Scholar 

  37. Mowafi HA, Al-Ghamdi A, Rushood A (2003) Intraocular pressure changes during laparoscopy in patients anesthetized with propofol total intravenous anesthesia versus isoflurane inhaled anesthesia. Anesth Analg 97(2):471–474

    CAS  PubMed  Google Scholar 

  38. Bharti N, Mohanty B, Bithal PK, Dash M, Dash HH (2008) Intra-ocular pressure changes associated with intubation with the intubating laryngeal mask airway compared with conventional laryngoscopy. Anaesth Intensive Care 36(3):431–435

    CAS  PubMed  Google Scholar 

  39. Arvizo C, Mehta ST, Yunker A (2018) Adverse events related to Trendelenburg position during laparoscopic surgery: recommendations and review of the literature. Curr Opin Obstet Gynecol 30(4):272–278

    PubMed  Google Scholar 

  40. Geis AB, Höfert A, Silvanus MT, Bornfeld N, Peters J (2015) Bilateral blindness due to ischemic optic nerve neuropathy after abdominal surgery. A A Case Rep 5(4):57–60

    PubMed  Google Scholar 

  41. van Wicklin SA (2020) Systematic review and meta-analysis of prone position on intraocular pressure in adults undergoing surgery. Int J Spine Surg 14(2):195–208

    Google Scholar 

  42. Rauh R, Hemmerling TM, Rist M, Jacobi KE (2001) Influence of pneumoperitoneum and patient positioning on respiratory system compliance. J Clin Anesth 13(5):361–365

    CAS  PubMed  Google Scholar 

  43. Sharma B, Kumar A, Sethi N, Sood J, Malhotra S, Sarangi R (2017) Changes in respiratory mechanics during extraperitoneal insufflation in inguinal hernia surgery. Indian J Anaesth 61(10):843–845

    PubMed  PubMed Central  Google Scholar 

  44. Bordes J, Mazzeo C, Gourtobe P, Cungi PJ, Antonini F, Bourgoin S et al (2015) Impact of extraperitoneal dioxyde carbon insufflation on respiratory function in anesthetized adults: a preliminary study using electrical impedance tomography and wash-out/wash-in technic. Anesth Pain Med 5(1):e22845

    PubMed  PubMed Central  Google Scholar 

  45. Nimmagadda UR, Joseph NJ, Salem MR, Villarreal JM, Lopez OI (1991) Positive end-expiratory pressure increases intraocular pressure in cats. Crit Care Med 19(6):796–800

    CAS  PubMed  Google Scholar 

  46. Mullett CE, Viale JP, Sagnard PE, Miellet CC, Ruynat LG, Counioux HC et al (1993) Pulmonary CO2 elimination during surgical procedures using intra- or extraperitoneal CO2 insufflation. Anesth Analg 76(3):622–626

    CAS  PubMed  Google Scholar 

  47. Streich B, Decailliot F, Perney C, Duvaldestin P (2003) Increased carbon dioxide absorption during retroperitoneal laparoscopy. Br J Anaesth 91(6):793–796

    CAS  PubMed  Google Scholar 

  48. Wright DM, Serpell MG, Baxter JN, O’Dwyer PJ (1995) Effect of extraperitoneal carbon dioxide insufflation on intraoperative blood gas and hemodynamic changes. Surg Endosc 9(11):1169–1172

    CAS  PubMed  Google Scholar 

  49. Kadam PG, Marda M, Shah VR (2008) Carbon dioxide absorption during laparoscopic donor nephrectomy: a comparison between retroperitoneal and transperitoneal approaches. Transpl Proc 40(4):1119–1121

    CAS  Google Scholar 

Download references

Funding

Faculty of medicine, Naresuan University.

Author information

Authors and Affiliations

Authors

Contributions

TB and PC conceived of the presented idea, developed the theory and writing research proposal. PC carried out the experiment data gathering and recording. TB processed the experimental data, performed, and verified the data analysis, drafted the manuscript and designed the tables and figure. TB and PC discussed the study results and edited the final manuscript.

Corresponding author

Correspondence to Pawan Chansaenroj.

Ethics declarations

Conflict of interest

Bhoopat T. and Chansaenroj P. declare that they have no conflict of interest or financial ties to disclose.

Ethical approval

This study was reviewed and approved by the Institutional Review Board.

Consent to participate

Written informed consent was obtained from all individual participants included in the study.

Consent to publish

All authors certify that they accept responsibility as authors and have contributed to the concept, data gathering, analysis, and manuscript drafting and given their final approval.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoopat, T., Chansaenroj, P. Comparison of intraocular pressure during laparoscopic totally extraperitoneal (TEP) versus transabdominal preperitoneal (TAPP) inguinal hernia repair. Surg Endosc 36, 2018–2024 (2022). https://doi.org/10.1007/s00464-021-08487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-021-08487-x

Keywords

Navigation