Skip to main content

Advertisement

Log in

Transoral robotic thyroidectomy versus transoral endoscopic thyroidectomy: a propensity-score-matched analysis of surgical outcomes

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Transoral endoscopic thyroidectomy vestibular approach (TOETVA) has been shown to be safe and has similar outcomes as open thyroidectomy for selected patients. It is not clear if transoral robotic thyroidectomy (TORT) may extend transoral endoscopic thyroidectomy to more complex thyroid operations. The study aimed to compare the safety and outcomes of TORT with those of TOETVA.

Methods

We retrospectively reviewed all patients who had TORT and TOETVA performed by a single surgeon from June 2017 to May 2019. Intrathoracic goiter and combined operations were excluded. Surgical outcomes were compared after propensity score matching. Learning curves, as measured by operating time, were evaluated.

Results

A total of 150 patients underwent 154 transoral (55 TORT and 99 TOETVA) thyroidectomy. Of the 154 operations, 28 (18.2%) were bilateral total thyroidectomy and 126 (81.8%) were unilateral thyroid lobectomy. After propensity score matching, we found a longer operative time (median [interquartile range]) for TORT (n = 53) than for the TOETVA (308 [284–388] vs 228 [201–267] min, P < 0.001). Blood loss and visual analog scale scores for pain were not significantly different between the two groups. Central neck lymph node dissection was performed more frequent in the TORT group (28 of 53 [52.8%] vs 10 of 53 [18.9%], P = 0.001), and when performed, the numbers of total and positive lymph nodes did not differ significantly between the two groups. The rates of hypoparathyroidism and recurrent laryngeal nerve injury did not differ significantly between the two groups. There was no conversion to open thyroidectomy, mental nerve injury, or surgical site infection. The learning curve for TORT was 25 cases, but no obvious learning curve was observed for TOETVA.

Conclusions

TORT requires a longer operative time, but is as safe as TOETVA and may be useful for more complex thyroid operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Choi Y, Lee JH, Kim YH, Lee YS, Chang HS, Park CS, Roh MR (2014) Impact of postthyroidectomy scar on the quality of life of thyroid cancer patients. Ann Dermatol 26:693–699

    Article  PubMed  PubMed Central  Google Scholar 

  2. Juarez MC, Ishii L, Nellis JC, Bater K, Huynh PP, Fung N, Darrach H, Russell JO, Ishii M (2019) Objectively measuring social attention of thyroid neck scars and transoral surgery using eye tracking. Laryngoscope 129:2789

    Article  PubMed  Google Scholar 

  3. Ikeda Y, Takami H, Sasaki Y, Kan S, Niimi M (2000) Endoscopic neck surgery by the axillary approach. J Am Coll Surg 191:336–340

    Article  CAS  PubMed  Google Scholar 

  4. Lee KE, Rao J, Youn YK (2009) Endoscopic thyroidectomy with the da Vinci robot system using the bilateral axillary breast approach (BABA) technique: our initial experience. Surg Laparosc Endosc Percutan Tech 19:e71-75

    Article  PubMed  Google Scholar 

  5. Kim WW, Kim JS, Hur SM, Kim SH, Lee SK, Choi JH, Kim S, Lee JE, Kim JH, Nam SJ, Yang JH, Choe JH (2011) Is robotic surgery superior to endoscopic and open surgeries in thyroid cancer? World J Surg 35:779–784

    Article  PubMed  Google Scholar 

  6. Ji YB, Song CM, Bang HS, Lee SH, Park YS, Tae K (2014) Long-term cosmetic outcomes after robotic/endoscopic thyroidectomy by a gasless unilateral axillo-breast or axillary approach. J Laparoendosc Adv Surg Tech A 24:248–253

    Article  PubMed  Google Scholar 

  7. Tae K, Ji YB, Song CM, Ryu J (2019) Robotic and endoscopic thyroid surgery: evolution and advances. Clin Exp Otorhinolaryngol 12:1–11. https://doi.org/10.21053/ceo.22018.00766

    Article  PubMed  Google Scholar 

  8. Anuwong A (2016) Transoral endoscopic thyroidectomy vestibular approach: a series of the first 60 human cases. World J Surg 40:491–497. https://doi.org/10.1007/s00268-00015-03320-00261

    Article  PubMed  Google Scholar 

  9. Dionigi G, Bacuzzi A, Lavazza M, Inversini D, Pappalardo V, Boni L, Rausei S, Barczynski M, Tufano RP, Kim HY, Anuwong A (2016) Transoral endoscopic thyroidectomy via vestibular approach: operative steps and video. Gland Surg 5:625–627. https://doi.org/10.21037/gs.22016.21012.21005

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jitpratoom P, Ketwong K, Sasanakietkul T, Anuwong A (2016) Transoral endoscopic thyroidectomy vestibular approach (TOETVA) for Graves’ disease: a comparison of surgical results with open thyroidectomy. Gland Surg 5:546–552. https://doi.org/10.21037/gs.22016.21011.21004

    Article  PubMed  PubMed Central  Google Scholar 

  11. Anuwong A, Kim HY, Dionigi G (2017) Transoral endoscopic thyroidectomy using vestibular approach: updates and evidences. Gland Surg 6:277–284. https://doi.org/10.21037/gs.22017.21003.21016

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chai YJ, Chung JK, Anuwong A, Dionigi G, Kim HY, Hwang KT, Heo SC, Yi KH, Lee KE (2017) Transoral endoscopic thyroidectomy for papillary thyroid microcarcinoma: initial experience of a single surgeon. Ann Surg Treat Res 93:70–75. https://doi.org/10.4174/astr.2017.4193.4172.4170

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dionigi G, Tufano RP, Russell J, Kim HY, Piantanida E, Anuwong A (2017) Transoral thyroidectomy: advantages and limitations. J Endocrinol Invest 40:1259–1263. https://doi.org/10.1007/s40618-40017-40676-40610

    Article  CAS  PubMed  Google Scholar 

  14. Anuwong A, Ketwong K, Jitpratoom P, Sasanakietkul T, Duh QY (2018) Safety and outcomes of the transoral endoscopic thyroidectomy vestibular approach. JAMA Surg 153:21–27. https://doi.org/10.1001/jamasurg.2017.3366

    Article  PubMed  Google Scholar 

  15. Chai YJ, Kim HY, Kim HK, Jun SH, Dionigi G, Anuwong A, Richmon JD, Tufano RP (2018) Comparative analysis of 2 robotic thyroidectomy procedures: transoral versus bilateral axillo-breast approach. Head Neck 40:886–892. https://doi.org/10.1002/hed.25034

    Article  PubMed  Google Scholar 

  16. Kim WW, Lee J, Jung JH, Park HY, Tufano RP, Kim HY (2018) A comparison study of the transoral and bilateral axillo-breast approaches in robotic thyroidectomy. J Surg Oncol 118:381–387. https://doi.org/10.1002/jso.25175

    Article  PubMed  Google Scholar 

  17. You JY, Kim HY, Chai YJ, Kim HK, Anuwong A, Tufano RP, Dionigi G (2019) Transoral robotic thyroidectomy versus conventional open thyroidectomy: comparative analysis of surgical outcomes in thyroid malignancies. J Laparoendosc Adv Surg Tech A 129:558–567

    Google Scholar 

  18. Sun H, Dionigi G (2019) Applicability of transoral robotic thyroidectomy: Is it the final solution? J Surg Oncol 119:541–542. https://doi.org/10.1002/jso.25362

    Article  PubMed  Google Scholar 

  19. Razavi CR, Khadem MGA, Fondong A, Clark JH, Richmon JD, Tufano RP, Russell JO (2018) Early outcomes in transoral vestibular thyroidectomy: robotic versus endoscopic techniques. Head Neck 40:2246–2253. https://doi.org/10.1002/hed.25323

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tae K, Lee DW, Song CM, Ji YB, Park JH, Kim DS, Tufano RP (2019) Early experience of transoral thyroidectomy: comparison of robotic and endoscopic procedures. Head Neck 41:730–738. https://doi.org/10.1002/hed.25426

    Article  PubMed  Google Scholar 

  21. Dionigi G, Lavazza M, Bacuzzi A, Inversini D, Pappalardo V, Tufano RP, Kim HY, Anuwong A (2017) Transoral endoscopic thyroidectomy vestibular approach (TOETVA): from A to Z. Surg Technol Int 30:103–112

    PubMed  Google Scholar 

  22. Anuwong A, Sasanakietkul T, Jitpratoom P, Ketwong K, Kim HY, Dionigi G, Richmon JD (2018) Transoral endoscopic thyroidectomy vestibular approach (TOETVA): indications, techniques and results. Surg Endosc 32:456–465. https://doi.org/10.1007/s00464-00017-05705-00468

    Article  PubMed  Google Scholar 

  23. Kim HY, Chai YJ, Dionigi G, Anuwong A, Richmon JD (2018) Transoral robotic thyroidectomy: lessons learned from an initial consecutive series of 24 patients. Surg Endosc 32:688–694. https://doi.org/10.1007/s00464-00017-05724-00465

    Article  PubMed  Google Scholar 

  24. Gschwandtner E, Seemann R, Bures C, Preldzic L, Szucsik E, Hermann M (2018) How many parathyroid glands can be identified during thyroidectomy?: Evidence-based data for medical experts. Eur Surg 50:14–21

    Article  PubMed  Google Scholar 

  25. Thomusch O, Machens A, Sekulla C, Ukkat J, Brauckhoff M, Dralle H (2003) The impact of surgical technique on postoperative hypoparathyroidism in bilateral thyroid surgery: a multivariate analysis of 5846 consecutive patients. Surgery 133:180–185

    Article  PubMed  Google Scholar 

  26. Cranshaw IM, Moss D, Whineray-Kelly E, Harman CR (2007) Intraoperative parathormone measurement from the internal jugular vein predicts post-thyroidectomy hypocalcaemia. Langenbecks Arch Surg 392:699–702

    Article  PubMed  Google Scholar 

  27. Falk SA, Birken EA, Baran DT (1988) Temporary postthyroidectomy hypocalcemia. Arch Otolaryngol Head Neck Surg 114:168–174

    Article  CAS  PubMed  Google Scholar 

  28. Shoback D (2008) Clinical practice. Hypoparathyroidism N Engl J Med 359:391–403

    Article  CAS  PubMed  Google Scholar 

  29. Ozogul B, Akcay MN, Akcay G, Bulut OH (2014) Factors affecting hypocalcaemia following total thyroidectomy: a prospective study. Eurasian J Med 46:15–21

    Article  PubMed  PubMed Central  Google Scholar 

  30. Goncalves Filho J, Kowalski LP (2005) Surgical complications after thyroid surgery performed in a cancer hospital. Otolaryngol Head Neck Surg 132:490–494

    Article  PubMed  Google Scholar 

  31. Friedrich T, Steinert M, Keitel R, Sattler B, Schonfelder M (1998) Incidence of damage to the recurrent laryngeal nerve in surgical therapy of various thyroid gland diseases–a retrospective study. Zentralbl Chir 123:25–29

    CAS  PubMed  Google Scholar 

  32. Ready AR, Barnes AD (1994) Complications of thyroidectomy. Br J Surg 81:1555–1556

    Article  CAS  PubMed  Google Scholar 

  33. Thomusch O, Sekulla C, Walls G, Machens A, Dralle H (2002) Intraoperative neuromonitoring of surgery for benign goiter. Am J Surg 183:673–678

    Article  PubMed  Google Scholar 

  34. Robertson ML, Steward DL, Gluckman JL, Welge J (2004) Continuous laryngeal nerve integrity monitoring during thyroidectomy: does it reduce risk of injury? Otolaryngol Head Neck Surg 131:596–600

    Article  PubMed  Google Scholar 

  35. Yarbrough DE, Thompson GB, Kasperbauer JL, Harper CM, Grant CS (2004) Intraoperative electromyographic monitoring of the recurrent laryngeal nerve in reoperative thyroid and parathyroid surgery. Surgery 136:1107–1115

    Article  PubMed  Google Scholar 

  36. Song CM, Yun BR, Ji YB, Sung ES, Kim KR, Tae K (2016) Long-term voice outcomes after robotic thyroidectomy. World J Surg 40:110–116

    Article  PubMed  Google Scholar 

  37. Chung WY (2012) Pros of robotic transaxillary thyroid surgery: its impact on cancer control and surgical quality. Thyroid 22:986–987

    Article  PubMed  Google Scholar 

  38. Tolley N, Arora A, Palazzo F, Garas G, Dhawan R, Cox J, Darzi A (2011) Robotic-assisted parathyroidectomy: a feasibility study. Otolaryngol Head Neck Surg 144:859–866

    Article  PubMed  Google Scholar 

  39. Tolley N, Garas G, Palazzo F, Prichard A, Chaidas K, Cox J, Darzi A, Arora A (2016) Long-term prospective evaluation comparing robotic parathyroidectomy with minimally invasive open parathyroidectomy for primary hyperparathyroidism. Head Neck 38(Suppl 1):E300-306

    Article  PubMed  Google Scholar 

  40. Park D, Shaear M, Chen YH, Russell JO, Kim HY, Tufano RP (2019) Transoral robotic thyroidectomy on two human cadavers using the Intuitive da Vinci single port robotic surgical system and CO2 insufflation: preclinical feasibility study. Head Neck 41:4229–4233

    Article  PubMed  Google Scholar 

  41. Chan JYK, Koh YW, Richmon J, Kim J, Holsinger FC, Orloff L, Anuwong A (2019) Transoral thyroidectomy with a next generation flexible robotic system: a feasibility study in a cadaveric model. Gland Surg 8:644–647

    Article  PubMed  PubMed Central  Google Scholar 

  42. Park YM, Kim DH, Moon YM, Lim JY, Choi EC, Kim SH, Holsinger FC, Koh YW (2019) Gasless transoral robotic thyroidectomy using the DaVinci SP system: feasibility, safety, and operative technique. Oral Oncol 95:136–142

    Article  PubMed  Google Scholar 

  43. Kim SW, Lee HS, Lee KD (2017) Intraoperative real-time localization of parathyroid gland with near infrared fluorescence imaging. Gland Surg 6:516–524

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yu HW, Chung JW, Yi JW, Song RY, Lee JH, Kwon H, Kim SJ, Chai YJ, Choi JY, Lee KE (2017) Intraoperative localization of the parathyroid glands with indocyanine green and Firefly(R) technology during BABA robotic thyroidectomy. Surg Endosc 31:3020–3027

    Article  PubMed  Google Scholar 

  45. Jitpratoom P, Anuwong A (2017) The use of ICG enhanced fluorescence for the evaluation of parathyroid gland preservation. Gland Surg 6:579–586

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jin H, Cui M (2019) New advances of ICG angiography in parathyroid identification. Endocr Metab Immune Disord Drug Targets 19:936–940

    Article  CAS  PubMed  Google Scholar 

  47. Russell JO, Clark J, Noureldine SI, Anuwong A, Al Khadem MG, Yub Kim H, Dhillon VK, Dionigi G, Tufano RP, Richmon JD (2017) Transoral thyroidectomy and parathyroidectomy: a North American series of robotic and endoscopic transoral approaches to the central neck. Oral Oncol 71:75–80. https://doi.org/10.1016/j.oraloncology.2017.1006.1001

    Article  PubMed  Google Scholar 

  48. Bakkar S, Frustaci G, Papini P, Fregoli L, Matteucci V, Materazzi G, Miccoli P (2016) Track recurrence after robotic transaxillary thyroidectomy: a case report highlighting the importance of controlled surgical indications and addressing unprecedented complications. Thyroid 26:559–561

    Article  PubMed  Google Scholar 

  49. Wu YJ, Chi SY, Elsarawy A, Chan YC, Chou FF, Lin YC, Wee SY, Pan CC, Cheng BC, Lin CC (2018) What is the appropriate nodular diameter in thyroid cancer for extraction by transoral endoscopic thyroidectomy vestibular approach without breaking the specimens? A surgicopathologic study. Surg Laparosc Endosc Percutan Tech 28:390–393. https://doi.org/10.1097/SLE.0000000000000563

    Article  PubMed  Google Scholar 

  50. Xu B, Ghossein RA (2018) Crucial parameters in thyroid carcinoma reporting: challenges, controversies and clinical implications. Histopathology 72:32–39

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen Y, Chomsky-Higgins K, Nwaogu I, Seib CD, Gosnell JE, Shen WT, Duh QY, Suh I (2018) Hidden in plain sight: transoral and submental thyroidectomy as a compelling alternative to “scarless” thyroidectomy. J Laparoendosc Adv Surg Tech A 28:1374–1377. https://doi.org/10.1089/lap.2018.0146

    Article  PubMed  Google Scholar 

  52. Zhang D, Fama F, Caruso E, Pinto G, Pontin A, Pino A, Mandolfino T, Gagliano E, Siniscalchi EN, De Ponte FS, Sun H, Dionigi G (2019) How to avoid and manage mental nerve injury in transoral thyroidectomy. Surg Technol Int 35:101–106

    CAS  PubMed  Google Scholar 

  53. Alsaad K, Lee TC, McCartan B (2003) An anatomical study of the cutaneous branches of the mental nerve. Int J Oral Maxillofac Surg 32:325–333

    Article  CAS  PubMed  Google Scholar 

  54. Won SY, Yang HM, Woo HS, Chang KY, Youn KH, Kim HJ, Hu KS (2014) Neuroanastomosis and the innervation territory of the mental nerve. Clin Anat 27:598–602

    Article  PubMed  Google Scholar 

  55. Alantar A, Roche Y, Maman L, Carpentier P (2000) The lower labial branches of the mental nerve: anatomic variations and surgical relevance. J Oral Maxillofac Surg 58:415–418

    Article  CAS  PubMed  Google Scholar 

  56. Kandil EH, Noureldine SI, Yao L, Slakey DP (2012) Robotic transaxillary thyroidectomy: an examination of the first one hundred cases. J Am Coll Surg 214:558–564

    Article  PubMed  Google Scholar 

  57. Kang SW, Lee SC, Lee SH, Lee KY, Jeong JJ, Lee YS, Nam KH, Chang HS, Chung WY, Park CS (2009) Robotic thyroid surgery using a gasless, transaxillary approach and the da Vinci S system: the operative outcomes of 338 consecutive patients. Surgery 146:1048–1055

    Article  PubMed  Google Scholar 

  58. Kim WW, Jung JH, Park HY (2015) The learning curve for robotic thyroidectomy using a bilateral axillo-breast approach from the 100 cases. Surg Laparosc Endosc Percutan Tech 25:412–416

    Article  PubMed  Google Scholar 

  59. Lee J, Yun JH, Choi UJ, Kang SW, Jeong JJ, Chung WY (2012) Robotic versus endoscopic thyroidectomy for thyroid cancers: a multi-institutional analysis of early postoperative outcomes and surgical learning curves. J Oncol 2012:734541

    PubMed  PubMed Central  Google Scholar 

  60. Lee J, Yun JH, Nam KH, Soh EY, Chung WY (2011) The learning curve for robotic thyroidectomy: a multicenter study. Ann Surg Oncol 18:226–232

    Article  PubMed  Google Scholar 

  61. Kim H, Kwon H, Lim W, Moon BI, Paik NS (2019) Quantitative assessment of the learning curve for robotic thyroid surgery. J Clin Med 8:402

    Article  PubMed Central  Google Scholar 

  62. Liao HJ, Dong C, Kong FJ, Zhang ZP, Huang P, Chang S (2014) The CUSUM analysis of the learning curve for endoscopic thyroidectomy by the breast approach. Surg Innov 21:221–228

    Article  PubMed  Google Scholar 

  63. Liang J, Hu Y, Zhao Q, Li Q (2015) Learning curve for endoscope holder in endoscopic thyroidectomy via complete areola approach: a prospective study. Surg Endosc 29:1920–1926

    Article  PubMed  Google Scholar 

  64. Kwak HY, Kim SH, Chae BJ, Song BJ, Jung SS, Bae JS (2014) Learning curve for gasless endoscopic thyroidectomy using the trans-axillary approach: CUSUM analysis of a single surgeon’s experience. Int J Surg 12:1273–1277

    Article  PubMed  Google Scholar 

  65. Razavi CR, Vasiliou E, Tufano RP, Russell JO (2018) Learning curve for transoral endoscopic thyroid lobectomy. Otolaryngol Head Neck Surg 159:625–629. https://doi.org/10.1177/0194599818795881

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tai DKC, Kim HY, Park D, You J, Kim HK, Russell JO, Tufano RP (2020) Obesity may not affect outcomes of transoral robotic thyroidectomy: subset analysis of 304 patients. Laryngoscope 130:1343–1348

    Article  PubMed  Google Scholar 

  67. Fernandez Ranvier G, Meknat A, Guevara DE, Llorente PM, Vidal Fortuny J, Sneider M, Chen YH, Inabnet W 3rd (2020) International multi-institutional experience with the transoral endoscopic thyroidectomy vestibular approach. J Laparoendosc Adv Surg Tech A 30:278–283

    Article  PubMed  Google Scholar 

  68. Chen S, Zhao M, Qiu J (2019) Transoral vestibule approach for thyroid disease: a systematic review. Eur Arch Otorhinolaryngol 276:297–304

    Article  PubMed  Google Scholar 

  69. Russell JO, Sahli ZT, Shaear M, Razavi C, Ali K, Tufano RP (2020) Transoral thyroid and parathyroid surgery via the vestibular approach-a 2020 update. Gland Surg 9:409–416

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Miss Ingrid Kuo and the Center for Big Data Analytics and Statistics (Grant CLRPG3D0046) at Chang Gung Memorial Hospital for creating the illustrations used herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Hsien Chen.

Ethics declarations

Disclosures

Drs. Yu-Hsien Chen, Hoon-Yub Kim, Angkoon Anuwong, Ting-Shuo Huang, and Quan-Yang Duh have no conflicts of interest or financial ties to disclose.

Ethical approval

This study was approved by the Ethics Committee of the Chang Gung Medical Foundation Institutional Review Board (no. 201901376B0) and was conducted in accordance with the Declaration of Helsinki (of the World Medical Association). Informed consent was waived because the data were analyzed retrospectively.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YH., Kim, HY., Anuwong, A. et al. Transoral robotic thyroidectomy versus transoral endoscopic thyroidectomy: a propensity-score-matched analysis of surgical outcomes. Surg Endosc 35, 6179–6189 (2021). https://doi.org/10.1007/s00464-020-08114-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-020-08114-1

Keywords

Navigation