Skip to main content

Advertisement

Log in

Mechanisms of Swallowing, Speech and Voice Disorders in Parkinson’s Disease: Literature Review with Our First Evidence for the Periperal Nervous System Involvement

  • Review
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

The majority of patients with Parkinson’s disease (PD) develop swallowing, speech, and voice (SSV) disorders. Importantly, swallowing difficulty or dysphagia and related aspiration are life-threatening conditions for PD patients. Although PD treatments have significant therapeutic effects on limb motor function, their effects on SSV disorders are less impressive. A large gap in our knowledge is that the mechanisms of SSV disorders in PD are poorly understood. PD was long considered to be a central nervous system disorder caused by the death of dopaminergic neurons in the basal ganglia. Aggregates of phosphorylated α-synuclein (PAS) underlie PD pathology. SSV disorders were thought to be caused by the same dopaminergic problem as those causing impaired limb movement; however, there is little evidence to support this. The pharynx, larynx, and tongue play a critical role in performing upper airway (UA) motor tasks and their dysfunction results in disordered SSV. This review aims to provide an overview on the neuromuscular organization patterns, functions of the UA structures, clinical features of SSV disorders, and gaps in knowledge regarding the pathophysiology underlying SSV disorders in PD, and evidence supporting the hypothesis that SSV disorders in PD could be associated, at least in part, with PAS damage to the peripheral nervous system controlling the UA structures. Determining the presence and distribution of PAS lesions in the pharynx, larynx, and tongue will facilitate the identification of peripheral therapeutic targets and set a foundation for the development of new therapies to treat SSV disorders in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data sources used in this review are publicly available and referenced accordingly in the article. Any additional information or data used in this review can be obtained by contacting the corresponding author.

Abbreviations

AChE:

Acetylcholinesterase

ASMA:

Anti-synuclein monoclonal antibody

CNS:

Central nervous system

CP:

Cricopharyngeus

CT:

Cricothyroid muscle

ESLN:

External superior laryngeal nerve

GG:

Genioglossus

HG:

Hyoglossus

HN:

Hypoglossal nucleus

IA:

Interarytenoid muscle

IL:

Inferior longitudinalis

IPC:

Inferior pharyngeal constrictor

ISLN:

Internal superior laryngeal nerve

IX:

Glossopharyngeal nerve

IX-L:

Lingual branch of the IX nerve

LCA:

Lateral cricoarytenoid muscle

LN:

Lingual nerve

MPC:

Middle pharyngeal constrictor

NA:

Nucleus ambiguous

PAS:

Phosphorylated α-synuclein

PC:

Pharyngeal constrictor

PCA:

Posterior cricoarytenoid muscle

PD:

Parkinson’s disease

Ph-IX:

Pharyngeal branch of the IX nerve

Ph-X:

Pharyngeal branch of the X nerve

PNS:

Peripheral nervous system

RLN:

Recurrent laryngeal nerve

SG:

Styloglossus

SL:

Superior longitudinalis

SLN:

Superior laryngeal nerve

SPC:

Superior pharyngeal constrictor

SSV:

Swallowing,speech and voice

T:

Transversus

TA:

Thyroarytenoid muscle

UA:

Upper airway

UE:

Upper esophagus

USSLBD:

Unified Staging System for Lewy Body Disorders

V:

Verticalis

VFB:

Vocal fold bowing

X:

Vagus nerve

XII:

Hypoglossal nerve

References

  1. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.

    Article  CAS  PubMed  Google Scholar 

  2. Rodriguez-Oroz MC, Jahanshahi M, Krack P, Litvan I, Macias R, Bezard E, Obeso JA. Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol. 2009;8(12):1128–39.

    Article  CAS  PubMed  Google Scholar 

  3. Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet. 2004;363(9423):1783–93.

    Article  CAS  PubMed  Google Scholar 

  4. Comi C, Magistrelli L, Oggioni GD, Carecchio M, Fleetwood T, Cantello R, Mancini F, Antonini A. Peripheral nervous system involvement in Parkinson’s disease: evidence and controversies. Parkinsonism Relat Disord. 2014;20(12):1329–34.

    Article  CAS  PubMed  Google Scholar 

  5. Ma C, Zhang W, Cao M. Role of the peripheral nervous system in PD pathology, diagnosis, and treatment. Front Neurosci. 2021;15:598457. https://doi.org/10.3389/fnins.2021.598457.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Del Tredici K, Rub U, De Vos RA, Bohl JRE, Braak H. Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol. 2002;61(5):413–26.

    Article  PubMed  Google Scholar 

  7. Jellinger KA. Neuropathological spectrum of synucleinopathies. Mov Disord. 2003;18(Suppl 6):2–12.

    Article  Google Scholar 

  8. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;318(1):121–34.

    Article  PubMed  Google Scholar 

  9. Braak H, Del Tredici K. Invited article: nervous system pathology in sporadic Parkinson disease. Neurology. 2008;70(20):1916–25.

    Article  PubMed  Google Scholar 

  10. Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White CL 3rd, et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 2010;119(6):689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Beach TG, Adler CH, Sue LI, Shill HA, Driver-Dunckley E, Mehta SH, et al. Vagus nerve and stomach synucleinopathy in Parkinson’s disease, incidental Lewy body disease, and normal elderly subjects: evidence against the “body-first” hypothesis. J Parkinsons Dis. 2021;11(4):1833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beach TG, Corbillé AG, Letournel F, Kordower JH, Kremer T, Munoz DG, et al. Multicenter assessment of immunohistochemical methods for pathological alpha-synuclein in sigmoid colon of autopsied Parkinson’s disease and control subjects. J Parkinsons Dis. 2016;6(4):761–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beach TG, Adler CH, Dugger BN, Serrano G, Hidalgo J, Henry-Watson J, et al. Submandibular gland biopsy for the diagnosis of Parkinson disease. J Neuropathol Exp Neurol. 2013;72(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  14. Beach TG, Adler CH, Serrano G, Sue L, Walker DG, Dugger BN, et al. Prevalence of submandibular gland synucleinopathy in Parkinson’s disease, dementia with Lewy bodies and other Lewy body disorders. J Parkinsons Dis. 2016;6(1):153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beach TG, Carew J, Serrano G, Adler CH, Shill HA, Sue LI, et al. Phosphorylated α-synuclein-immunoreactive retinal neuronal elements in Parkinson’s disease subjects. Neurosci Lett. 2014;571:34–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chahine LM, Beach TG, Brumm MC, Adler CH, Coffey CS, Mosovsky S, et al. In vivo distribution of α-synuclein in multiple tissues and biofluids in Parkinson disease. Neurology. 2020;95(9):e1267–e84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chahine LM, Beach TG, Adler CH, Hepker M, Kanthasamy A, Appel S, et al. Central and peripheral α-synuclein in Parkinson disease detected by seed amplification assay. Ann Clin Transl Neurol. 2023;10(5):696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adler CH, Dugger BN, Hinni ML, Lott DG, Driver-Dunckley E, Hidalgo J, et al. Submandibular gland needle biopsy for the diagnosis of Parkinson disease. Neurology. 2014;82(10):858–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adler CH, Dugger BN, Hentz JG, Hinni ML, Lott DG, Driver-Dunckley E, et al. Peripheral synucleinopathy in early Parkinson’s disease: submandibular gland needle biopsy findings. Mov Disord. 2016;31(2):250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Serrano GE, Shprecher D, Callan M, Cutler B, Glass M, Zhang N, et al. Cardiac sympathetic denervation and synucleinopathy in Alzheimer’s disease with brain Lewy body disease. Brain Commun. 2020;2(1):fcaa004.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Manne S, Kondru N, Jin H, Serrano GE, Anantharam V, Kanthasamy A, et al. Blinded RT-QuIC analysis of α-synuclein biomarker in skin tissue from Parkinson’s disease patients. Mov Disord. 2020;35(12):2230–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Braak H, de Vos RAI, Bohl J, Del Tredici K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett. 2006;396(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  23. Wakabayashi K, Takahashi H, Ohama E, Ikuta F. Parkinson’s disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol. 1990;79(6):581–3.

    Article  CAS  PubMed  Google Scholar 

  24. Lebouvier T, Neunlist M, Bruley des Varannes S, Coron E, Drouard A, N’Guyen JM, et al. Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS ONE. 2010;5(9):e12728.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cersosimo MG, Perandones C, Micheli FE, Raina GB, Beron AM, Nasswetter G, et al. Alpha-synuclein immunoreactivity in minor salivary gland biopsies of Parkinson’s disease patients. Mov Disord. 2011;26(1):188–90.

    Article  PubMed  Google Scholar 

  26. Amino T, Orimo S, Itoh Y, Takahashi A, Uchihara T, Mizusawa H. Profound cardiac sympathetic denervation occurs in Parkinson disease. Brain Pathol. 2005;15(1):29–34.

    Article  PubMed  Google Scholar 

  27. Orimo S, Uchihara T, Nakamura A, Mori F, Kakita A, Wakabayashi K, Takahashi H. Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s disease. Brain. 2008;131(Pt 3):642–50.

    Article  PubMed  Google Scholar 

  28. Dabby R, Djaldetti R, Shahmurov M, Treves TA, Gabai B, Melamed E, Sadeh M, Avinoach I. Skin biopsy for assessment of autonomic denervation in Parkinson’s disease. J Neural Transm (Vienna). 2006;113(9):1169–76.

    Article  CAS  PubMed  Google Scholar 

  29. Miki Y, Tomiyama M, Ueno T, Haga R, Nishijima H, Suzuki C, et al. Clinical availability of skin biopsy in the diagnosis of Parkinson’s disease. Neurosci Lett. 2010;469(3):357–9.

    Article  CAS  PubMed  Google Scholar 

  30. Lee JM, Derkinderen P, Kordower JH, Freeman R, Munoz DG, Kremer T, et al. The search for a peripheral biopsy indicator of α-synuclein pathology for Parkinson Disease. J Neuropathol Exp Neurol. 2017;76(1):2–15.

    CAS  PubMed  Google Scholar 

  31. Mu L, Sobotka S, Chen J, Su H, Sanders I, Adler CH, et al. Alpha-synuclein pathology and axonal degeneration of the peripheral motor nerves innervating pharyngeal muscles in Parkinson’s disease. J Neuropathol Exp Neurol. 2013;72(2):119–29.

    Article  CAS  PubMed  Google Scholar 

  32. Mu L, Sobotka S, Chen J, Su H, Sanders I, Nyirenda T, et al. Parkinson disease affects peripheral sensory nerves in the pharynx. J Neuropathol Exp Neurol. 2013;72(7):614–23.

    Article  PubMed  Google Scholar 

  33. Mu L, Sobotka S, Chen J, Su H, Sanders I, Adler CH, et al. Altered pharyngeal muscles in Parkinson’s disease. J Neuropathol Exp Neurol. 2012;71(6):520–30.

    Article  PubMed  Google Scholar 

  34. Mu L, Chen J, Sobotka S, Nyirenda T, Benson B, Gupta F, et al. Alpha-synuclein pathology in sensory nerve terminals of the upper aerodigestive tract of Parkinson’s disease patients. Dysphagia. 2015;30(4):404–17.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Curtis JA, Molfenter SM, Troche MS. Pharyngeal area changes in Parkinson’s disease and its effect on swallowing safety, efficiency, and kinematics. Dysphagia. 2020;35(2):389–98.

    Article  PubMed  Google Scholar 

  36. Sapir S, Pawlas AA, Ramig LO, et al. Voice and speech abnormalities in Parkinson disease: relation to severity of motor impairment, duration of disease, medication, depression, gender, and age. J Med Speech-Language Pathol. 2001;9:213–26.

    Google Scholar 

  37. Sapir S, Ramig L, Fox C. Voice, speech and swallowing disorders. In: Factor S, Weiner W, editors. Parkinson disease: diagnosis and clinical management. New York: Demos Medical Publishing; 2008. pp. 77–97.

    Google Scholar 

  38. Robbins JA, Logemann JA, Kirshner HS. Swallowing and speech production in Parkinson’s disease. Ann Neurol. 1986;19(3):283–7.

    Article  CAS  PubMed  Google Scholar 

  39. Stroudley J, Walsh M. Radiological assessment of dysphagia in Parkinson’s disease. Br J Radiol. 1991;64(766):890–3.

    Article  CAS  PubMed  Google Scholar 

  40. Bird MR, Woodward MC, Gibson EM, Phyland DJ, Fonda D. Asymptomatic swallowing disorders in elderly patients with Parkinson’s disease: a description of findings on clinical examination and videofluoroscopy in sixteen patients. Age Aging. 1994;23(3):251–4.

    Article  CAS  Google Scholar 

  41. Cook IJ, Kahrilas PJ. AGA technical review on management of oropharyngeal dysphagia. Gastroenterology. 1999;116(2):455–78.

    Article  CAS  PubMed  Google Scholar 

  42. Gorell JM, Johnson CC, Rybicki BA. Parkinson’s disease and its comorbid disorders: an analysis of Michigan mortality data, 1970 to 1990. Neurology. 1994;44(10):1865–8.

    Article  CAS  PubMed  Google Scholar 

  43. Wermuth L, Stenager EN, Stenager E, Boldsen J. Mortality in patients with Parkinson’s disease. Acta Neurol Scand. 1995;92(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  44. Beyer MK, Herlofson K, Arsland D, Larsen JP. Causes of death in a community-based study of Parkinson’s disease. Acta Neurol Scand. 2001;103(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  45. Fernandez HH, Lapane KL. Predictors of mortality among nursing home residents with a diagnosis of Parkinson’s disease. Med Sci Monit. 2002;8(4):CR241–6.

    PubMed  Google Scholar 

  46. Mehanna R, Jankovic J. Respiratory problems in neurologic movement disorders. Parkinsonism Relat Disord. 2010;16(10):628–38.

    Article  PubMed  Google Scholar 

  47. Won JH, Byun SJ, Oh BM, Park SJ, Seo H. Risk and mortality of aspiration pneumonia in Parkinson’s disease: a nationwide database study. Sci Rep. 2021;11:6597.

    Google Scholar 

  48. Hunker CJ, Abbs JH, Barlow SM. The relationship between parkinsonian rigidity and hypokinesia in the orofacial system: a quantitative analysis. Neurology. 1982;32(7):749–54.

    Article  CAS  PubMed  Google Scholar 

  49. Ali GN, Wallace KL, Schwartz R, DeCarle DJ, Zagami AS, Cook IJ. Mechanisms of oral-pharyngeal dysphagia in patients with Parkinson’s disease. Gastroenterology. 1996;110(2):383–92.

    Article  CAS  PubMed  Google Scholar 

  50. Hunter PC, Crameri J, Austin S, Woodward MC, Hughes AJ. Response of parkinsonian swallowing dysfunction to dopaminergic stimulation. J Neurol Neurosurg Psychiatry. 1997;63(5):579–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Duff J, Sime E. Surgical interventions in the treatment of Parkinson’s disease (PD) and essential tremor (ET): medial pallidotomy in PD and chronic deep brain stimulation (DBS) in PD and ET. Axone. 1997;18(4):85–9.

    CAS  PubMed  Google Scholar 

  52. Kompoliti K, Wang QE, Goetz CG, Leurgans S, Raman R. Effects of central dopaminergic stimulation by apomorphine on speech in Parkinson’s disease. Neurology. 2000;54(2):458–62.

    Article  CAS  PubMed  Google Scholar 

  53. Kent RD, Duffy JR, Slama A, Kent JF, Clift A. Clinicoanatomic studies in dysarthria: review, critique, and directions for research. J Speech Lang Hear Res. 2001;44(3):535–51.

    Article  CAS  PubMed  Google Scholar 

  54. Sapir S, Ramig L, Fox C. Speech and swallowing disorders in Parkinson disease. Curr Opin Otolaryngol Head Neck Surg. 2008;16(3):205–10.

    Article  PubMed  Google Scholar 

  55. Leopold NA, Kagel MC. Pharyngo-esophageal dysphagia in Parkinson’s disease. Dysphagia. 1997;12(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  56. Ertekin C, Tarlaci S, Aydogdu I, Kiylioglu N, Yuceyar N, Turman AB, et al. Electrophysiological evaluation of pharyngeal phase of swallowing in patients with Parkinson’s disease. Mov Disord. 2002;17(5):942–9.

    Article  PubMed  Google Scholar 

  57. Doty RW. Neural organization of deglutition. In: Code CF, editor. Handbook of physiology. Section 6, Alimentary canal. Volume 4. Washington, D.C.: American Physiological Society; 1968. pp. 1861–902.

    Google Scholar 

  58. Kuna ST, Smickley JS, Vanoye CR. Respiratory-related pharyngeal constrictor muscle activity in normal human adults. Am J Respir Crit Care Med. 1997;155:1991–9.

    Article  CAS  PubMed  Google Scholar 

  59. Minifie FD, Abbs JH, Tarlow A, Kwaterski M. EMG activity within the pharynx during speech production. J Speech Hear Res. 1974;17:497–504.

    Article  CAS  PubMed  Google Scholar 

  60. Standring S, Ellis H, Healy JC, Johnson D, Williams A. Gray’s anatomy. The anatomical basis of clinical practice. 39th ed. New York: Churchill Livingstone; 2005.

    Google Scholar 

  61. Mu L, Sanders I. Neuromuscular specializations within human pharyngeal constrictor muscles. Ann Otol Rhinol Laryngol. 2007;116(8):604–17.

    Article  PubMed  Google Scholar 

  62. Sanders I, Mu L. Anatomy of the human internal superior laryngeal nerve. Anat Rec. 1998;252(4):646–56.

    Article  CAS  PubMed  Google Scholar 

  63. Mu L, Sanders I. Sensory nerve supply of the human oro- and laryngopharynx: a preliminary study. Anat Rec. 2000;258(4):406–20.

    Article  CAS  PubMed  Google Scholar 

  64. Pommerenk WT. A study of the sensory areas eliciting the swallowing reflex. Am J Physiol. 1928;84:36–41.

    Article  Google Scholar 

  65. Sanders I, Wu BL, Mu L, Li Y, Biller HF. The innervation of the human larynx. Arch Otolaryngol Head Neck Surg. 1993;119(9):934–9.

    Article  CAS  PubMed  Google Scholar 

  66. Sanders I, Wu BL, Mu L, Biller HF. The innervation of the human posterior cricoarytenoid muscle: evidence for at least two neuromuscular compartments. Laryngoscope. 1994;104(7):880–4.

    Article  CAS  PubMed  Google Scholar 

  67. Mu L, Sanders I, Wu BL, Biller HF. The intramuscular innervation of the human interarytenoid muscle. Laryngoscope. 1994;104(1 Pt 1):33–9.

    Article  CAS  PubMed  Google Scholar 

  68. Mu L, Sanders I. The human cricothyroid muscle: three muscle bellies and their innervation patterns. J Voice. 2009;23(1):21–8.

    Article  PubMed  Google Scholar 

  69. Storey AT. Laryngeal initiation of swallowing. Exp Neurol. 1968;20(3):359–65.

    Article  CAS  PubMed  Google Scholar 

  70. Shingai T, Shimada K. Reflex swallowing elicited by water and chemical substances applied in the oral cavity, pharynx, and larynx of the rabbit. Jpn J Physiol. 1976;26(5):455–69.

    Article  CAS  PubMed  Google Scholar 

  71. Stedman H, Bradley R, Mistretta C, et al. Chemosensitive responses from the cat epiglottis. Chem Senses. 1980;5:233–45.

    Article  CAS  Google Scholar 

  72. Kawasaki A, Fukuda H, Shiotani A, Kanzaki J. Study of movements of individual structures of the larynx during swallowing. Auris Nasus Larynx. 2001;28(1):75–84.

    Article  CAS  PubMed  Google Scholar 

  73. Leopold NA, Kagel MC. Laryngeal deglutition movement in Parkinson’s disease. Neurology. 1997;48(2):373–6.

    Article  CAS  PubMed  Google Scholar 

  74. Hanson DG, Gerratt BR, Ward PH. Cinegraphic observations of laryngeal function in Parkinson’s disease. Laryngoscope. 1984;94(3):348–53.

    Article  CAS  PubMed  Google Scholar 

  75. Smith ME, Ramig LO, Dromey C, Perez KS, Samandari R. Intensive voice treatment in Parkinson disease: laryngostroboscopic findings. J Voice. 1995;9(4):453–9.

    Article  CAS  PubMed  Google Scholar 

  76. Perez KS, Ramig LO, Smith ME, Dromey C. The Parkinson larynx: tremor and videostroboscopic findings. J Voice. 1996;10(4):354–61.

    Article  CAS  PubMed  Google Scholar 

  77. Stelzig Y, Hochhaus W, Gall V, Henneberg A. [Laryngeal manifestations in patients with Parkinson disease]. Laryngorhinootologie. 1999;78(10):544–51.

    Article  CAS  PubMed  Google Scholar 

  78. Blumin JH, Pcolinsky DE, Atkins JP. Laryngeal findings in advanced Parkinson’s disease. Ann Otol Rhinol Laryngol. 2004;113(4):253–8.

    Article  PubMed  Google Scholar 

  79. Sinclair CF, Gurey LE, Brin MF, Stewart C, Blitzer A. Surgical management of airway dysfunction in Parkinson’s disease compared with Parkinson-plus syndromes. Ann Otol Rhinol Laryngol. 2013;122(5):294–8.

    Article  PubMed  Google Scholar 

  80. Addington WR, Stephens RE, Gilliland K, Miller SP. Tartaric acid-induced cough and the superior laryngeal nerve evoked potential. Am J Phys Med Rehabil. 1998;77(6):523–6.

    Article  CAS  PubMed  Google Scholar 

  81. Doty RW, Bosma JF. An electromyographic analysis of reflex deglutition. J Neurophysiol. 1956;19(1):44–60.

    Article  CAS  PubMed  Google Scholar 

  82. Miller A. The neuroscientific principles of swallowing and dysphagia. San Diego: Singular Publishing Group, Inc.; 1999.

    Google Scholar 

  83. Bradley RM. Sensory receptors of the larynx. Am J Med. 2000;108(Suppl 4a):47S–50S.

    Article  PubMed  Google Scholar 

  84. Medda BK, Kern M, Ren J, Xie P, Ulualp SO, Lang IM, Shaker R. Relative contribution of various airway protective mechanisms to prevention of aspiration during swallowing. Am J Gastrointest Liver Physiol. 2003;284(6):G933–9.

    Article  CAS  Google Scholar 

  85. Shaker R, Ren J, Bardan E, Eastering C, Dua K, Xie P, Kern M. Pharyngoglottal closure reflex: characterization in healthy young, elderly and dysphagic patients with predeglutitive aspiration. Gerontology. 2003;49(1):12–20.

    Article  PubMed  Google Scholar 

  86. Murakami Y, Kirchner JA. Mechanical and physiological properties of reflex laryngeal closure. Ann Otol Rhinol Laryngol. 1972;81(1):59–71.

    Article  CAS  PubMed  Google Scholar 

  87. Nishino T, Tagaito Y, Isono S. Cough and other reflexes on irritation of airway mucosa in man. Pulm Pharmacol. 1996;9(5–6):285–92.

    Article  CAS  PubMed  Google Scholar 

  88. Andreatta RD, Mann EA, Poletto CJ, Ludlow CL. Mucosal afferents mediate laryngeal adductor responses in the cat. J Appl Physiol. 2002;93(5):1622–9.

    Article  PubMed  Google Scholar 

  89. Meyer TK. The larynx for neurologists. Neurologist. 2009;15(6):313–8.

    Article  PubMed  Google Scholar 

  90. Addington WR, Stephens RE, Goulding RE. Anesthesia for the superior laryngeal nerves and tartaric acid-induced cough. Arch Phys Med Rehabil. 1999;80(12):1584–6.

    Article  CAS  PubMed  Google Scholar 

  91. Venker-van Haagen AJ, Van den Brom WE, Hellebrekers LJ. Effect of superior laryngeal nerve transection on pharyngeal muscle contraction timing and sequence of activity during eating and stimulation of the nucleus solitarius in dogs. Brain Res Bull. 1999;49(6):393–400.

    Article  CAS  PubMed  Google Scholar 

  92. Jafari S, Prince RA, Kim DY, Paydarfar D. Sensory regulation of swallowing and airway protection: a role for the internal superior laryngeal nerve in humans. J Physiol. 2003;550(Pt 1):287–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Luschei ES, Ramig LO, Baker KL, Smith ME. Discharge characteristics of laryngeal single motor units during phonation in young and older adults and in persons with Parkinson disease. J Neurophysiol. 1999;81(5):2131–9.

    Article  CAS  PubMed  Google Scholar 

  94. Merati AL, Heman-Ackah YD, Abaza M, Altman KW, Sulica L, Belamowicz S. Common movement disorders affecting the larynx: a report from the neurolaryngology committee of the AAO-HNS. Otolaryngol Head Neck Surg. 2005;133(5):654–65.

    Article  PubMed  Google Scholar 

  95. Pitts T, Bolser D, Rosenbek J, Troche M, Sapienza C. Voluntary cough production and swallow dysfunction in Parkinson’s disease. Dysphagia. 2008;23(3):297–301.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Niimi A, Matsumoto H, Ueda T, Takemura M, Suzuki K, Tanaka E, et al. Impaired cough reflex in patients with recurrent pneumonia. Thorax. 2003;58(2):152–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aviv JE, Martin JH, Keen MS, Debell M, Blitzer A. Air pulse quantification of supraglottic and pharyngeal sensation: a new technique. Ann Otol Rhinol Laryngol. 1993;102(10):777–80.

    Article  CAS  PubMed  Google Scholar 

  98. Aviv JE. Sensory discrimination in the larynx and hypopharynx. Otolaryngol Head Neck Surg. 1997;116(3):331–4.

    Article  CAS  PubMed  Google Scholar 

  99. Aviv JE, Kim T, Sacco RL, Kaplan S, Goodhart K, Diamond B, Close LG. FEESST: a new bedside endoscopic test of the motor and sensory components of swallowing. Ann Otol Rhinol Laryngol. 1998;107(5 Pt 1):378–87.

    CAS  PubMed  Google Scholar 

  100. Aviv JE, Spitzer J, Cohen M, Ma G, Belafsky P, Close LG. Laryngeal adductor reflex and pharyngeal squeeze as predictors of laryngeal penetration and aspiration. Laryngoscope. 2002;112(2):338–41.

    Article  PubMed  Google Scholar 

  101. Hammer MJ, Murphy CA, Abrams TM. Airway somatosensory deficits and dysphagia in Parkinson’s disease. J Parkinsons Dis. 2013;3(1):39–44.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Setzen M, Cohen MA, Mattucci KF, Perlman PW, Ditkoff MK. Laryngopharyngeal sensory deficits as a predictor of aspiration. Otolaryngol Head Neck Surg. 2001;124(6):622–4.

    Article  CAS  PubMed  Google Scholar 

  103. Setzen M, Cohen MA, Perlman PW, Belafsky PC, Guss J, Mattucci KF, Ditkoff M. The association between laryngopharyngeal sensory deficits, pharyngeal motor function, and the prevalence of aspiration with thin liquids. Otolaryngol Head Neck Surg. 2003;128(1):99–102.

    Article  PubMed  Google Scholar 

  104. Hammer MJ, Barlow SM. Laryngeal somatosensory deficits in Parkinson’s disease: implications for speech respiratory and phonatory control. Exp Brain Res. 2010;201(3):401–9.

    Article  PubMed  Google Scholar 

  105. He X, Zhang JF, Li ZX, Liu C, Yang LT, Wang N, et al. The traits of five types of tongue movement in Han of Shaanxi, China. Anat Sci Int. 2012;87(4):181–6.

    Article  PubMed  Google Scholar 

  106. Kappert KDR, van Dijk S, Wellenstein D, van Alphen MJA, van Son RJJH, Smeele LE, Balm AJM. Five specific tongue movements in a healthy population. Dysphagia. 2021;36(4):736–42.

    Article  PubMed  Google Scholar 

  107. Sanders I, Mu L. A three-dimensional atlas of human tongue muscles. Anat Rec (Hoboken). 2013;296(7):1102–14.

    Article  PubMed  Google Scholar 

  108. Mu L, Sanders I. Human tongue neuroanatomy: nerve supply and motor endplates. Clin Anat. 2010;23(7):777–91.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Saigusa H, Tanuma K, Yamashita K, Saigusa M, Niimi S. Nerve fiber analysis for the lingual nerve of the human adult subjects. Surg Radiol Anat. 2006;28(1):59–65.

    Article  PubMed  Google Scholar 

  110. Sawczuk A, Mosier KM. Neural control of tongue movement with respect to respiration and swallowing. Crit Rev Oral Biol Med. 2001;12(1):18–37.

    Article  CAS  PubMed  Google Scholar 

  111. Miller AJ. Oral and pharyngeal reflexes in the mammalian nervous system: their diverse range in complexity and the pivotal role of the tongue. Crit Rev Oral Biol Med. 2002;13(5):409–25.

    Article  CAS  PubMed  Google Scholar 

  112. Napadow VJ, Chen Q, Wedeen VJ, Gilbert RJ. Biomechanical basis for lingual muscular deformation during swallowing. Am J Physiol. 1999;277(3):G695–701.

    CAS  PubMed  Google Scholar 

  113. Palmer PM, Jaffe DM, McCulloch TM, Finnegan EM, Van Daele DJ, Luschei ES. Quantitative contributions of the muscles of the tongue, floor-of-mouth, jaw, and velum to tongue-to-palate pressure generation. J Speech Lang Hear Res. 2008;51(4):828–35.

    Article  PubMed  Google Scholar 

  114. Hiiemae KM, Palmer JB. Tongue movements in feeding and speech. Crit Rev Oral Biol Med. 2003;14(6):413–29.

    Article  PubMed  Google Scholar 

  115. Bailey EF, Fregosi RF. Coordination of intrinsic and extrinsic tongue muscles during spontaneous breathing in the rat. J Appl Physiol. 2004;96(2):440–9.

    Article  CAS  PubMed  Google Scholar 

  116. Tjaden K. Speech and swallowing in Parkinson’s disease. Top Geriatr Rehabil. 2008;24(2):115–26.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Johnson JA, Pring TR. Speech therapy and Parkinson’s disease: a review and further data. Br J Disord Commun. 1990;25(2):183–94.

    Article  CAS  PubMed  Google Scholar 

  118. Brabenec L, Mekyska J, Galaz Z, Rektorova I. Speech disorders in Parkinson’s disease: early diagnostics and effects of medication and brain stimulation. J Neural Transm (Vienna). 2017;124(3):303–34.

    Article  CAS  PubMed  Google Scholar 

  119. Ma EP, Yiu EM. Voice activity and participation profile: assessing the impact of voice disorder on daily activities. J Speech Lang Hear Res. 2001;44(3):511–24.

    Article  CAS  PubMed  Google Scholar 

  120. Schulz GM, Grant MK. Effects of speech therapy and pharmacologic and surgical treatments on voice and speech in Parkinson’s disease: a review of the literature. J Commun Disord. 2000;33(1):59–88.

    Article  CAS  PubMed  Google Scholar 

  121. Pinto S, Ozsancak C, Tripoliti E, Thobois S, Limousin-Dowsey P, Auzou P. Treatments for dysarthria in Parkinson’s disease. Lancet Neurol. 2004;3(9):547–56.

    Article  PubMed  Google Scholar 

  122. Pu T, Huang M, Kong X, Wang M, Chen X, Feng X, Wei C, Weng X, Xu F. Lee Silverman voice treatment to improve speech in Parkinson’s disease: a systemic review and meta-analysis. Parkinsons Dis. 2021;3366870. https://doi.org/10.1155/2021/3366870.

  123. Mancopes R, Smaoui S, Steele CM. Effects of expiratory muscle strength training on videofluoroscopic measures of swallowing: a systematic review. AJSLP. 2020;29:335–56.

    PubMed  Google Scholar 

  124. Beach TG, Adler CH, Lue L, Sue LI, Bachalakuri J, Henry-Watson J, et al. Unified staging system for Lewy body disorders: correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropath. 2009;117(6):613–34.

    Article  PubMed  Google Scholar 

  125. Adler CH, Beach TG, Zhang N, Shill HA, Driver-Dunckley E, Caviness JN, et al. Unified staging system for Lewy body disorders: clinicopathologic correlations and comparison to Braak staging. J Neuropathol Exp Neurol. 2019;78(10):891–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Attems J, Toledo JB, Walker L, Gelpi E, Gentleman S, Halliday G, et al. Neuropathological consensus criteria for the evaluation of Lewy pathology in post-mortem brains: a multi-center study. Acta Neuropathol. 2021;141(2):151–72.

    Article  Google Scholar 

  127. Kovari E, Burkhardt K, Lobrinus JA, Bouras C. Lewy body dysphagia. Acta Neuropathol. 2007;114(3):295–8.

    Article  PubMed  Google Scholar 

  128. Braak H, Rub U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna). 2003;110(5):517–36.

    Article  CAS  PubMed  Google Scholar 

  129. Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007;33(6):599–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fields CR, Bengoa-Vergniory N, Wade-Martins R. Targeting alpha-synuclein as a therapy for Parkinson’s disease. Front Mol Neurosci. 2019;12:229.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Defense, Defense Health Program, Congressionally Directed Medical Research Programs (CDMRP), Parkinson’s Research Program under Award No. HT9425-23-1-0481 (to Dr. Liancai Mu). Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the Department of Defense. We are grateful to the Banner Sun Health Research Institute Brain and Body Donation Program of Sun City, Arizona for the provision of human biological materials. The Brain and Body Donation Program has been supported by the National Institute of Neurological Disorders and Stroke (U24 NS072026 National Brain and Tissue Resource for Parkinson’s Disease and Related Disorders), the National Institute on Aging (P30AG019610 and P30AG072980, Arizona Alzheimer’s Disease Center), the Arizona Department of Health Services (contract 211002, Arizona Alzheimer’s Research Center), the Arizona Biomedical Research Commission (contracts 4001, 0011, 05-901 and 1001 to the Arizona Parkinson’s Disease Consortium) and the Michael J. Fox Foundation for Parkinson’s Research. The authors thank the anonymous reviewers for their constructive comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liancai Mu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, L., Chen, J., Li, J. et al. Mechanisms of Swallowing, Speech and Voice Disorders in Parkinson’s Disease: Literature Review with Our First Evidence for the Periperal Nervous System Involvement. Dysphagia (2024). https://doi.org/10.1007/s00455-024-10693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00455-024-10693-3

Keywords

Navigation