Skip to main content

Advertisement

Log in

Brain and Pharyngeal Responses Associated with Pharmacological Treatments for Oropharyngeal Dysphagia in Older Patients

  • Review
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Impaired pharyngo-laryngeal sensory function is a critical mechanism for oropharyngeal dysphagia (OD). Discovery of the TRP family in sensory nerves opens a window for new active treatments for OD. To summarize our experience of the action mechanism and therapeutic effects of pharyngeal sensory stimulation by TRPV1, TRPA1 and TRPM8 agonists in older patients with OD. Summary of our studies on location and expression of TRP in the human oropharynx and larynx, and clinical trials with acute and after 2 weeks of treatment with TRP agonists in older patients with OD. (1) TRP receptors are widely expressed in the human oropharynx and larynx: TRPV1 was localized in epithelial cells and TRPV1, TRPA1 and TRPM8 in sensory fibers mainly below the basal lamina. (2) Older people present a decline in pharyngeal sensory function, more severe in patients with OD associated with delayed swallow response, impaired airway protection and reduced spontaneous swallowing frequency. (3) Acute stimulation with TRP agonists improved the biomechanics and neurophysiology of swallowing in older patients with OD TRPV1 = TRPA1 > TRPM8. (4) After 2 weeks of treatment, TRPV1 agonists induced cortical changes that correlated with improvements in swallowing biomechanics. TRP agonists are well tolerated and do not induce any major adverse events. TRP receptors are widely expressed in the human oropharynx and larynx with specific patterns. Acute oropharyngeal sensory stimulation with TRP agonists improved neurophysiology, biomechanics of swallow response, and safety of swallowing. Subacute stimulation promotes brain plasticity further improving swallow function in older people with OD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Modified from Alvarez-Berdugo et al. 2016 and 2018. Parts of this figure were drawn using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/)

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ortega O, Martín A, Clavé P. Diagnosis and management of oropharyngeal dysphagia among older persons, state of the art. J Am Med Dir Assoc. 2017;18:576–82. https://doi.org/10.1016/j.jamda.2017.02.015.

    Article  PubMed  Google Scholar 

  2. Wirth R, Dziewas R, Beck AM, Clavé P, Hamdy S, Heppner HJ, et al. Oropharyngeal dysphagia in older persons – from pathophysiology to adequate intervention: a review and summary of an international expert meeting. Clin Interv Aging. 2016;11:189–208. https://doi.org/10.2147/CIA.S97481.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clavé P, Shaker R. Dysphagia: current reality and scope of the problem. Nat Rev Gastroenterol Hepatol. 2015;12:259–70. https://doi.org/10.1038/nrgastro.2015.49.

    Article  PubMed  Google Scholar 

  4. Baijens LWJ, Clavé P, Cras P, Ekberg O, Forster A, Kolb GF, et al. European society for swallowing disorders - European union geriatric medicine society white paper: oropharyngeal dysphagia as a geriatric syndrome. Clin Interv Aging. 2016;11:1403–28. https://doi.org/10.2147/CIA.S107750.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Clavé P, Kraa M, Arreola V, Girvent M, Farré R, Palomera E, et al. The effect of bolus viscosity on swallowing function in neurogenic dysphagia. Aliment Pharmacol Ther. 2006;24:1385–94. https://doi.org/10.1111/j.1365-2036.2006.03118.x.

    Article  PubMed  Google Scholar 

  6. Kahrilas PJ, Logemann JA, Lin S, Ergun GA. Pharyngeal clearance during swallowing: a combined manometric and videofluoroscopic study. Gastroenterology. 1992;103:128–36. https://doi.org/10.1016/0016-5085(92)91105-D.

    Article  CAS  PubMed  Google Scholar 

  7. Clavé P, Rofes L, Carrión S, Ortega O, Cabré M, Serra-Prat M, et al. Pathophysiology, relevance and natural history of oropharyngeal dysphagia among older people. Nestle Nutr Inst Workshop Ser. 2012;72:57–66. https://doi.org/10.1159/000339986.

    Article  PubMed  Google Scholar 

  8. Rofes L, Arreola V, Romea M, Palomera E, Almirall J, Cabré M, et al. Pathophysiology of oropharyngeal dysphagia in the frail elderly. Neurogastroenterol Motil. 2010;22:1–9. https://doi.org/10.1111/j.1365-2982.2010.01521.x.

    Article  Google Scholar 

  9. Rofes L, Vilardell N, Clavé P. Post-stroke dysphagia: progress at last. Neurogastroenterol Motil. 2013;25:278–82. https://doi.org/10.1111/nmo.12112.

    Article  CAS  PubMed  Google Scholar 

  10. Rofes L, Ortega O, Vilardell N, Mundet L, Clavé P. Spatiotemporal characteristics of the pharyngeal event-related potential in healthy subjects and older patients with oropharyngeal dysfunction. Neurogastroenterol Motil. 2017;29:1–11. https://doi.org/10.1111/nmo.12916.

    Article  PubMed  Google Scholar 

  11. Tomsen N, Ortega O, Nascimento W, Carrión S, Clavé P. Oropharyngeal dysphagia in older people is associated with reduced pharyngeal sensitivity and low substance P and CGRP concentration in saliva. Dysphagia. 2021;37:48–57. https://doi.org/10.1007/s00455-021-10248-w.

    Article  PubMed  Google Scholar 

  12. Aviv J. Effects of aging on sensitivity of the pharyngeal and supraglottic areas. Am J Med. 1997;103:74S-76S. https://doi.org/10.1016/S0002-9343(97)00327-6.

    Article  CAS  PubMed  Google Scholar 

  13. Tiago R, Pontes P, do Brasil OC. Age-related changes in human laryngeal nerves. Otolaryngol Head Neck Surg. 2007;136:747–51. https://doi.org/10.1016/j.otohns.2006.11.054.

    Article  PubMed  Google Scholar 

  14. Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev. 2001;81:929–69. https://doi.org/10.1152/physrev.2001.81.2.929.

    Article  CAS  PubMed  Google Scholar 

  15. Cabib C, Ortega O, Kumru H, Palomeras E, Vilardell N, Alvarez-Berdugo D, et al. Neurorehabilitation strategies for poststroke oropharyngeal dysphagia: from compensation to the recovery of swallowing function. Ann N Y Acad Sci. 2016;1380:121–38. https://doi.org/10.1111/nyas.13135.

    Article  PubMed  Google Scholar 

  16. Miarons M, Tomsen N, Nascimento W, Espín A, López-Faixó D, Clavé P, et al. Increased levels of substance P in patients taking beta-blockers are linked with a protective effect on oropharyngeal dysphagia. Neurogastroenterol Motil. 2018;30:e13397. https://doi.org/10.1111/nmo.13397.

    Article  CAS  PubMed  Google Scholar 

  17. Nakato R, Manabe N, Shimizu S, Hanayama K, Shiotani A, Hata J, et al. Effects of capsaicin on older patients with oropharyngeal dysphagia: a double-blind, placebo-controlled, crossover study. Digestion. 2017;95:210–20. https://doi.org/10.1159/000463382.

    Article  CAS  PubMed  Google Scholar 

  18. Van Oosterhout WPJ, Schoonman GG, Garrelds IM, Danser AHJ, Chan KY, Terwindt GM, et al. A human capsaicin model to quantitatively assess salivary CGRP secretion. Cephalalgia. 2015;35:675–82. https://doi.org/10.1177/0333102414553824.

    Article  PubMed  Google Scholar 

  19. Martin A, Ortega O, Roca M, Arús M, Clavé P. Effect of a minimal-massive intervention in hospitalized older patients with oropharyngeal dysphagia: a proof of concept study. J Nutr Health Aging. 2018;22:739–47. https://doi.org/10.1007/s12603-018-1091-8.

    Article  CAS  PubMed  Google Scholar 

  20. Speyer R, Cordier R, Sutt AL, Remijn L, Heijnen BJ, Balaguer M, et al. Behavioural interventions in people with oropharyngeal dysphagia: a systematic review and meta-analysis of randomised clinical trials. J Clin Med. 2022;11:685. https://doi.org/10.3390/jcm11030685.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alvarez-berdugo D, Rofes L, Casamitjana JF, Padrón A, Quer M, Clavé P. Oropharyngeal and laryngeal sensory innervation in the pathophysiology of swallowing disorders and sensory stimulation treatments. Ann N Y Acad Sci. 2016;1380:104–20. https://doi.org/10.1111/nyas.13150.

    Article  PubMed  Google Scholar 

  22. The Nobel Prize web. https://www.nobelprize.org/prizes/medicine/2021/summary/. Accessed 5 July 2022

  23. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Högestätt ED, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature. 2004;427:260–5. https://doi.org/10.1038/nature02282.

    Article  CAS  PubMed  Google Scholar 

  24. McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature. 2002;416:52–8. https://doi.org/10.1038/nature719.

    Article  CAS  PubMed  Google Scholar 

  25. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, et al. A TRP channel that senses cold stimuli and menthol. Cell. 2002;108:705–15. https://doi.org/10.1016/S0092-8674(02)00652-9.

    Article  CAS  PubMed  Google Scholar 

  26. Logemann JA, Kahrilas PJ, Cheng J, Pauloski BR, Gibbons PJ, Rademaker AW, Lin S. Closure mechanisms of laryngeal vestibule during swallow. Am J Physiol Am J Physiol. 1992;262:G338–44. https://doi.org/10.1152/ajpgi.1992.262.2.G338.

    Article  CAS  PubMed  Google Scholar 

  27. Magaya M, Sumi Y. Reaction time in the submental muscles of normal older people. J Am Geriatr Soc. 2002;50:975–6. https://doi.org/10.1046/j.1532-5415.2002.50235.x.

    Article  Google Scholar 

  28. Vilardell N, Arreola LRV, Muriana AMD, Clavé P. Videofluoroscopic assessment of the pathophysiology of chronic poststroke oropharyngeal dysphagia. Neurogastroenterol Motil. 2017;29:1–8. https://doi.org/10.1111/nmo.13111.

    Article  CAS  PubMed  Google Scholar 

  29. Robbins J, Gangnon RE, Theis SM, Kays SA, Hewitt AL, Hind JA. The effects of lingual exercise on swallowing in older adults. J Am Geriatr Soc. 2005;53:1483–9. https://doi.org/10.1111/j.1532-5415.2005.53467.x.

    Article  PubMed  Google Scholar 

  30. Rofes L, Arreola V, Almirall J, Cabré M, Campins L, García-Peris P, et al. Diagnosis and management of oropharyngeal Dysphagia and its nutritional and respiratory complications in the elderly. Gastroenterol Res Pract. 2011;2011:818979. https://doi.org/10.1155/2011/818979.

    Article  PubMed  Google Scholar 

  31. Miarons M, Clavé P, Wijngaard R, Omar O, Arreola V, Nascimento W, et al. Pathophysiology of oropharyngeal dysphagia assessed by videofluoroscopy in patients with dementia taking antipsychotics. J Am Med Dir Assoc. 2018;19:812.e1-812.e10. https://doi.org/10.1016/j.jamda.2018.04.016.

    Article  PubMed  Google Scholar 

  32. Nascimento WV, Arreola V, Sanz P, Necati E, Bolivar-Prados M, Michou E, et al. Pathophysiology of swallowing dysfunction in Parkinson disease and lack of dopaminergic impact on the swallow function and on the effect of thickening agents. Brain Sci Brain Sci. 2020;10:609. https://doi.org/10.3390/brainsci10090609.

    Article  PubMed  Google Scholar 

  33. Espinosa-Val C, Martín-Martínez A, Graupera M, Arias O, Elvira A, Cabré M, et al. Prevalence, risk factors, and complications of oropharyngeal dysphagia in older patients with dementia. Nutrients. 2020;12:863. https://doi.org/10.3390/nu12030863.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nascimento W, Tomsen N, Acedo S, Campos-Alcantara C, Cabib C, Alvarez-Larruy M, et al. Effect of aging, gender and sensory stimulation of TRPV1 receptors with capsaicin on spontaneous swallowing frequency in patients with oropharyngeal dysphagia: a proof-of-concept study. Diagnostics. 2021;11:461. https://doi.org/10.3390/diagnostics11030461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alvarez-Larruy M, Tomsen N, Guanyabens N, Palomeras E, Clavé P, Nascimento W. Spontaneous swallowing frequency in post-stroke patients with and without oropharyngeal dysphagia: an observational study. Dysphagia. 2022. https://doi.org/10.1007/s00455-022-10451-3.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cabib C, Ortega O, Vilardell N, Mundet L, Clavé P, Rofes L. Chronic post-stroke oropharyngeal dysphagia is associated with impaired cortical activation to pharyngeal sensory inputs. Eur J Neurol. 2017;4:1355–62. https://doi.org/10.1111/ene.13392.

    Article  Google Scholar 

  37. Hamdy S, Aziz Q, Rothwell JC, Singh KD, Barlow J, Hughes DG, et al. The cortical topography of human swallowing musculature in health and disease. Nat Med. 1996;2:1217–24. https://doi.org/10.1038/nm1196-1217.

    Article  CAS  PubMed  Google Scholar 

  38. Cabib C, Nascimento W, Rofes L, Arreola V, Tomsen N, Mundet L, et al. Neurophysiological and biomechanical evaluation of the mechanisms which impair safety of swallow in chronic post-stroke patients. Transl Stroke Res. 2019;11:16–28. https://doi.org/10.1007/s12975-019-00701-2.

    Article  PubMed  Google Scholar 

  39. Gartner LP. Oral anatomy and tissue types. Semin Dermatol Semin Dermatol. 1994;13:68–73.

    CAS  PubMed  Google Scholar 

  40. Squier CA, Kremer MJ. Biology of oral mucosa and esophagus. J Natl Cancer Inst Monogr. 2001;29:7–15. https://doi.org/10.1093/oxfordjournals.jncimonographs.a003443.

    Article  Google Scholar 

  41. Mu L, Sanders I. Sensory nerve supply of the human oro- and laryngopharynx: a preliminary study. Anat Rec. 2000;258:406–20. https://doi.org/10.1002/(SICI)1097-0185(20000401)258:4%3c406::AID-AR9%3e3.0.CO;2-5.

    Article  CAS  PubMed  Google Scholar 

  42. Zur KB, Mu L, Sanders I. Distribution pattern of the human lingual nerve. Clin Anat Clin Anat. 2004;17:88–92. https://doi.org/10.1002/ca.10166.

    Article  PubMed  Google Scholar 

  43. Hiroto I, Toyozumi Y, Yatake Y. Comparative anatomy of the laryngeal nerves of mammals. Nihon Jibiinkoka Gakkai Kaiho. 1968;71:212–6.

    Article  CAS  PubMed  Google Scholar 

  44. Sanders IS, Mu L. Anatomy of the human internal superior laryngeal nerve. Anat Rec. 1998;252:646–56. https://doi.org/10.1002/(SICI)1097-0185(199812)252:4%3c646::AID-AR15%3e3.0.CO;2-E.

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe IW. Fine structure of lamellated nerve endings in the gingiva of man and the Cebus apella monkey. Okajimas Folia Anat Jpn. 1982;59:181–97. https://doi.org/10.2535/ofaj1936.59.2-3_181.

    Article  CAS  PubMed  Google Scholar 

  46. Watanabe I, Yamada E. The fine structure of lamellated nerve endings found in the rat gingiva. Arch Histol Jpn. 1983;46:173–82. https://doi.org/10.1679/aohc.46.173.

    Article  CAS  PubMed  Google Scholar 

  47. Watanabe I, Yamada E. A light and electron microscopic study of lamellated nerve endings found in the rat cheek mucosa. Arch Histol Jpn. 1985;48:497–504. https://doi.org/10.1679/aohc.48.497.

    Article  CAS  PubMed  Google Scholar 

  48. Bengoechea Gonzalez ME, Alvarez Arenal A, Perez Casas A, Suarez Garnacho A, Vega Alvarez A, Villa Vigil A. Microscopic innervation and nerve receptors of the lingual mucosa. Rev Eur Odontoestomatol. 1989;1:123–30.

    CAS  PubMed  Google Scholar 

  49. Smith KR Jr. The ultrastructure of the human Haarscheibe and Merkel cell. J Invest Dermatol. 1970;54:150–9. https://doi.org/10.1111/1523-1747.ep12257929.

    Article  PubMed  Google Scholar 

  50. Hashimoto K. Fine structure of Merkel cell in human oral mucosa. J Invest Dermatol. 1972;58:381–7. https://doi.org/10.1111/1523-1747.ep12540607.

    Article  CAS  PubMed  Google Scholar 

  51. Toyoshima K, Miyamoto K, Itoh A, Shimamura A. Merkel-neurite complexes in the fungiform papillae of two species of monkeys. Cell Tissue Res. 1987;250:237–9. https://doi.org/10.1007/BF00214677.

    Article  CAS  PubMed  Google Scholar 

  52. Munger BL, Ide C. The structure and function of cutaneous sensory receptors. Arch Histol Cytol. 1988;51:1–34. https://doi.org/10.1679/aohc.51.1.

    Article  CAS  PubMed  Google Scholar 

  53. Watanabe ISW. Ultrastructures of mechanoreceptors in the oral mucosa. Anat Sci Int. 2004;79:55–61. https://doi.org/10.1111/j.1447-073x.2004.00067.x.

    Article  PubMed  Google Scholar 

  54. Chouchkov CN. On the fine structure of Krause’s bulbs in human skin, oral cavity and rectum. Arch Histol Jpn. 1973;35:365–75. https://doi.org/10.1679/aohc1950.35.365.

    Article  CAS  PubMed  Google Scholar 

  55. Lawrenson JG, Ruskell GL. The structure of corpuscular nerve endings in the limbal conjunctiva of the human eye. J Anat. 1991;177:75–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Munger BL. The intraepidermal innervation of the snout skin of the opossum. A light and electron microscope study, with observations on the nature of Merkel’s Tastzellen. J Cell Biol. 1965;26:79–97. https://doi.org/10.1083/jcb.26.1.79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chiba T, Watanabe S, Shin T. Ultrastructure of the glomerular corpuscular nerve endings in the subepithelium of human epiglottis. Arch Histol Jpn. 1985;48:213–21. https://doi.org/10.1679/aohc.48.213.

    Article  CAS  PubMed  Google Scholar 

  58. Stone LM, Finger TE, Tam PP, Tan SS. Taste receptor cells arise from local epithelium, not neurogenic ectoderm. Proc Natl Acad Sci USA. 1995;92:1916–20. https://doi.org/10.1073/pnas.92.6.1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Okubo T, Clark C, Hogan BLM. Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate. Stem Cells. 2009;27:442–50. https://doi.org/10.1634/stemcells.2008-0611.

    Article  CAS  PubMed  Google Scholar 

  60. Roper SD. The cell biology of vertebrate taste receptors. Annu Rev Neurosci. 1989;12:329–53. https://doi.org/10.1146/annurev.ne.12.030189.001553.

    Article  CAS  PubMed  Google Scholar 

  61. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor : a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24. https://doi.org/10.1038/39807.

    Article  CAS  PubMed  Google Scholar 

  62. Cortright DN, Crandall M, Sanchez JF, Zou T, Krause JE, White G. The tissue distribution and functional characterization of human VR1. Biochem Biophys Res Commun. 2001;281:1183–9. https://doi.org/10.1006/bbrc.2001.4482.

    Article  CAS  PubMed  Google Scholar 

  63. Denda M, Fuziwara S, Inoue K, Denda S, Akamatsu H, Tomitaka A, et al. Immunoreactivity of VR1 on epidermal keratinocyte of human skin. Biochem Biophys Res Commun. 2001;285:1250–2. https://doi.org/10.1006/bbrc.2001.5299.

    Article  CAS  PubMed  Google Scholar 

  64. Ugawa S, Ueda T, Yamamura H, Nagao M, Shimada S. Coexpression of vanilloid receptor subtype-1 and acid-sensing ion channel genes in the human trigeminal ganglion neurons. Chem Senses. 2005;30(Suppl 1):195. https://doi.org/10.1093/chemse/bjh181.

    Article  Google Scholar 

  65. Alvarez-Berdugo D, Rofes L, Farré R, Casamitjana JF, Enrique A, Chamizo J, et al. Localization and expression of TRPV1 and TRPA1 in the human oropharynx and larynx. Neurogastroenterol Motil. 2016;28:91–100. https://doi.org/10.1111/nmo.12701.

    Article  CAS  PubMed  Google Scholar 

  66. Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with Aδ/C-fibers and colocalization with Trk receptors. J Comp Neurol. 2005;493:596–606. https://doi.org/10.1002/cne.20794.

    Article  CAS  PubMed  Google Scholar 

  67. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112:819–29. https://doi.org/10.1016/S0092-8674(03)00158-2.

    Article  CAS  PubMed  Google Scholar 

  68. Atoyan R, Shander D, Botchkareva NV. Non-neuronal expression of transient receptor potential type A1 (TRPA1) in human skin. J Invest Dermatol. 2009;129:2312–5. https://doi.org/10.1038/jid.2009.58.

    Article  CAS  PubMed  Google Scholar 

  69. Mukhopadhyay I, Gomes P, Aranake S, Shetty M, Karnik P, Damle M, et al. Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J Recept Signal Transduct Res. 2011;31:350–8. https://doi.org/10.3109/10799893.2011.602413.

    Article  CAS  PubMed  Google Scholar 

  70. Alvarez-Berdugo D, Rofes L, Casamitjana JF, Enrique A, Chamizo J, Viña C, et al. TRPM8, ASIC1, and ASIC3 localization and expression in the human oropharynx. Neurogastroenterol Motil. 2018;30:5–7. https://doi.org/10.1111/nmo.13398.

    Article  CAS  Google Scholar 

  71. Alvarez-Berdugo D, Jiménez M, Clavé P, Rofes L. Pharmacodynamics of TRPV1 agonists in a bioassay using human PC-3 cells. Sci World J. 2014. https://doi.org/10.1155/2014/184526.

    Article  Google Scholar 

  72. CIBERehd Web. https://www.ciberehd.org/en. Accessed 5 July 2022

  73. Webinar Dr. Julius. https://webinar.cientifis.com/c-visitadavidjulius/. Accessed 2 June 2022

  74. Maccarrone M, Di Rienzo M, Battista N, Gasperi V, Guerrieri P, Rossi A, et al. The endocannabinoid system in human keratinocytes. Evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activation protein-1, and transglutaminase. J Biol Chem. 2003;278:33896–903. https://doi.org/10.1074/jbc.M303994200.

    Article  CAS  PubMed  Google Scholar 

  75. Southall MD, Li T, Gharibova LS, Pei Y, Nicol GD, Travers JB. Activation of epidermal vanilloid receptor-1 induces release of proinflammatory mediators in human keratinocytes. J Pharmacol Exp Ther. 2003;304:217–22.

    Article  CAS  PubMed  Google Scholar 

  76. Ahluwalia J, Urban L, Bevan S, Nagy I. Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro. Eur J Neurosci. 2003;17:2611–8. https://doi.org/10.1046/j.1460-9568.2003.02703.x.

    Article  PubMed  Google Scholar 

  77. Shin T, Watanabe S, Wada S, Maeyama T. Sensory nerve endings in the mucosa of the epiglottis–morphologic investigations with silver impregnation, immunohistochemistry, and electron microscopy. Otolaryngol Head Neck Surg. 1987;96:55–62. https://doi.org/10.1177/019459988709600110.

    Article  CAS  PubMed  Google Scholar 

  78. Watanabe IS, Yamada E, Yamada E. Unusual nerve endings found in the rat palatine mucosa. Arch Histol Jpn. 1984;47:187–96. https://doi.org/10.1679/aohc.47.187.

    Article  CAS  PubMed  Google Scholar 

  79. Nakagawa T, Ohrui T, Sekizawa K, Sasaki H. Sputum substance P in aspiration pneumonia. Lancet. 1995;345:1447.

    Article  CAS  PubMed  Google Scholar 

  80. Imoto Y, Kojima A, Osawa Y, Sunaga H. Cough reflex induced by capsaicin inhalation in patients with dysphagia. Acta Otolaryngol. 2011;131:96–100. https://doi.org/10.3109/00016489.2010.516013.

    Article  CAS  PubMed  Google Scholar 

  81. Rofes L, Arreola V, Martin A, Clave P. Natural capsaicinoids improve swallow response in older patients with oropharyngeal dysphagia. Gut. 2013;62:1280–7. https://doi.org/10.1136/gutjnl-2011-300753.

    Article  PubMed  Google Scholar 

  82. Rofes L, Arreola V, Martin A, Clavé P. Effect of oral piperine on the swallow response of patients with oropharyngeal dysphagia. J Gastroenterol. 2014;49:1517–23. https://doi.org/10.1007/s00535-013-0920-0.

    Article  PubMed  Google Scholar 

  83. Alvarez-Berdugo D, Rofes L, Arreola V, Martin A, Molina L, Clavé P. A comparative study on the therapeutic effect of TRPV1, TRPA1, and TRPM8 agonists on swallowing dysfunction associated with aging and neurological diseases. Neurogastroenterol Motil. 2017. https://doi.org/10.1111/nmo.13185.

    Article  PubMed  Google Scholar 

  84. Tomsen N, Ortega O, Rofes L, Arreola V, Martin A, Mundet L, et al. Acute and subacute effects of oropharyngeal sensory stimulation with TRPV1 agonists in older patients with oropharyngeal dysphagia: a biomechanical and neurophysiological randomized pilot study. Ther Adv Gastroenterol. 2019;12:1–13. https://doi.org/10.1177/1756284819842043.

    Article  CAS  Google Scholar 

  85. Tomsen N, Alvarez-Berdugo D, Rofes L, Ortega O, Arreola V, Nascimento W, et al. A randomized clinical trial on the acute therapeutic effect of TRPA1 and TRPM8 agonists in patients with oropharyngeal dysphagia. Neurogastroenterol Motil. 2020;32:e13821. https://doi.org/10.1111/nmo.13821.

    Article  CAS  PubMed  Google Scholar 

  86. Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Hogestatt ED, et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci. 2005;102:12248–52. https://doi.org/10.1073/pnas.0505356102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cabib C, Nascimento W, Rofes L, Arreola V, Tomsen N, Mundet L, et al. Short-term neurophysiological effects of sensory pathway neurorehabilitation strategies on chronic poststroke oropharyngeal dysphagia. Neurogastroenterol Motil. 2020;32:1–14. https://doi.org/10.1111/nmo.13887.

    Article  CAS  Google Scholar 

  88. Ebihara T, Takahashi H, Ebihara S. Capsaicin troche for swallowing dysfunction in older people. J Am Geriatr Soc. 2005;53:824–8. https://doi.org/10.1111/j.1532-5415.2005.53261.x.

    Article  PubMed  Google Scholar 

  89. Ebihara T, Sekizawa K, Nakazawa H, Sasaki H. Capsaicin and swallowing reflex. Lancet. 1993;341:432. https://doi.org/10.1016/0140-6736(93)93023-T.

    Article  CAS  PubMed  Google Scholar 

  90. Cheng I, Sasegbon A, Hamdy S. Effects of pharmacological agents for neurogenic oropharyngeal dysphagia: a systematic review and meta-analysis. Neurogastroenterol Motil. 2022;34:e14220. https://doi.org/10.1111/nmo.14220.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work has been supported by Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III (ISCIII) (PI14/00453 and PI18/00241); Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas, ISCIII (EHD16PI02); Proyectos de Investigación Clínica Independiente, ISCIII (ICI20/00117); Programa de Estabilización de Investigadores/Programa de Intensificación de la Actividad Investigadora en el Sistema Nacional de Salud (INT15/00026 and INT16/00111); Agencia de Gestió d’Ajuts Universitaris i de Recerca (2009 SGR 708 and 2014 SGR 789); Fundació la Marató de TV3 (Project 112310): Agrupació Mutua; and Nestlé Health Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noemí Tomsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clavé, P., Ortega, O., Rofes, L. et al. Brain and Pharyngeal Responses Associated with Pharmacological Treatments for Oropharyngeal Dysphagia in Older Patients. Dysphagia 38, 1449–1466 (2023). https://doi.org/10.1007/s00455-023-10578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-023-10578-x

Keywords

Navigation