Skip to main content

Advertisement

Log in

Cortical Activation of Swallowing Using fNIRS: A Proof of Concept Study with Healthy Adults

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine whether functional near-infrared spectroscopy (fNIRS) could reliably identify cortical activation patterns as healthy adults engaged in single sip and continuous swallowing tasks. Thirty-three right-handed adults completed two functional swallowing tasks, one control jaw movement task, and one rest task while being imaged with fNIRS. Swallowing tasks included a single sip of 5 mL of water via syringe and continuous straw drinking. fNIRS patches for acquisition of neuroimaging data were placed parallel over left and right hemispheres. Stimuli presentation was controlled with set time intervals and audio instructions. Using a series of linear mixed effect models, results demonstrated clear cortical activation patterns during swallowing. The continuous swallowing task demonstrated significant differences in blood oxygenation and deoxygenation concentration values across nearly all regions examined, but most notably M1 in both hemispheres. Of note is that there were areas of greater activation, particularly on the right hemisphere, when comparing the single sip swallow to the jaw movement control and rest tasks. Results from the current study support the use of fNIRS during investigation of swallowing. The utilization of healthy adults as a method for acquiring normative data is vital for comparison purposes when investigating individuals with disorders, but also in the development of rehabilitation techniques. Identifying activation areas that pertain to swallowing will have important implications for individuals requiring dysphagia therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Matsuo K, Palmer J. Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys Med Rehabil Clin N Am. 2008;19(4):691–707. https://doi.org/10.1016/j.pmr.2008.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Murray T, Carrau R, Chan K. Clinical management of swallowing disorders. 5th ed. San Diego: Plural Publishing; 2020.

    Google Scholar 

  3. Logemann, J. Evaluation and treatment of swallowing disorders. 2nd edn. Austin; 1998

  4. Ludlow C. Central nervous system control of voice and swallowing. J Clin Neurophysiol. 2015;32(4):294–303. https://doi.org/10.1097/WNP.0000000000000186.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Michou E, Hamdy S. Cortical input in control of swallowing. Curr Opin Otolaryngol Head Neck Surg. 2009;17:166–71. https://doi.org/10.1097/MOO.0b013e32832b255e.

    Article  PubMed  Google Scholar 

  6. Penfield W, Rasmussen T. The cerebral cortex of man. New York: Macmillan; 1950.

    Google Scholar 

  7. Martin R, Kemppainen P, Masuda Y, Yao D, Murray G, Sessle B. Features of cortically evoked swallowing in the awake primate (Macaca fascicularis). J Neurophysiol. 1999;82(3):1529–41. https://doi.org/10.1152/jn.1999.82.3.1529.

    Article  CAS  PubMed  Google Scholar 

  8. Narita N, Yamamura K, Yao D, Martin R, Sessle B. Effects of functional disruption of lateral pericentral cerebral cortex on primate swallowing. Brain Res. 1999;824(1):140–5. https://doi.org/10.1016/s0006-8993(99)01151-8.

    Article  CAS  PubMed  Google Scholar 

  9. Soros P, Inamoto Y, Martin R. Functional brain imaging of swallowing: an activation likelihood estimation meta-analysis. Hum Brain Mapp. 2008. https://doi.org/10.1002/hbm.20680.

    Article  PubMed Central  Google Scholar 

  10. Martin R, Goodyear B, Gati J, Menon R. Cerebral cortical representation of automatic and volitional swallowing in humans. J of Neurophysiol. 2001;85(2):938–50. https://doi.org/10.1152/jn.2001.85.2.938.

    Article  CAS  Google Scholar 

  11. Grohol J. What is functional near-infrared spectroscopy? Psych Central. 2016 https://psychcentral.com/lib/what-is-functional-optical-brain-imaging/. Accessed on 9 Apr 2018

  12. Irani F, Platek S, Bunce S, Ruocco A, Chute D. Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders. Clin Neuropsychol. 2007;21(1):9–37. https://doi.org/10.1080/13854040600910018.

    Article  PubMed  Google Scholar 

  13. Strangman G, Culver J, Thompson J, Boas D. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage. 2002;17(2):719–31. https://doi.org/10.1006/nimg.2002.1227.

    Article  PubMed  Google Scholar 

  14. Wolf M, Wolf U, Choi J, Gupta R, Safonova L, Paunescu L, Michalos A, Gratton E. Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex. Neuroimage. 2002;17(4):1868–75. https://doi.org/10.1006/nimg.2002.1261.

    Article  PubMed  Google Scholar 

  15. Zabel A, Chute D. Educational neuroimaging: a proposed neuropsychological application of near-infrared spectroscopy (nIRS). J Head Trauma Rehabil. 2002;17(5):477–88. https://doi.org/10.1097/00001199-200210000-00008.

    Article  PubMed  Google Scholar 

  16. Yücel M, Selb J, Huppert T, Franceschini M, Boas D. Functional near infrared spectroscopy: enabling routine functional brain imaging. Curr Opin Biomedical Eng. 2017;4:78–86. https://doi.org/10.1016/j.cobme.2017.09.011.

    Article  Google Scholar 

  17. Matusz P, Dikker S, Huth A, Perrodin C. Are we ready for real-world neuroscience? J Cognitive Neurosci. 2018. https://doi.org/10.1162/jocn.

    Article  Google Scholar 

  18. Quaresima V, Ferrari M. Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review. Organ Res Methods. 2019;22(1):46–68. https://doi.org/10.1177/1094428116658959.

    Article  Google Scholar 

  19. Mulheren R, Ludlow C. Vibration over the larynx increases swallowing and cortical activation for swallowing. J Neurophysiol. 2017;118(3):1698–708. https://doi.org/10.1152/jn.00244.2017.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kamarunas E, Mulheren R, Palmore K, Ludlow C. Timing of cortical activation during spontaneous swallowing. Exp Brain Res. 2018;236(2):475–84. https://doi.org/10.1007/s00221-017-5139-5.

    Article  PubMed  Google Scholar 

  21. Inamoto K, Sakuma S, Ariji Y, Higuchi N, Izumi M, Nakata K. Measurement of cerebral blood volume dynamics during volitional swallowing using functional near-infrared spectroscopy: an exploratory study. Neurosci Lett. 2015;588(19):67–71. https://doi.org/10.1016/j.neulet.2014.12.034.

    Article  CAS  PubMed  Google Scholar 

  22. Matsumoto K, Ono Y, Tamaki K, Ikuta R, Kataoka K. Development of chair-side evaluation system of swallowing discomfort of denture wearers. In: Proceedings of SPIE 10501, optical diagnostics and sensing XVIII: toward point-of-care diagnostics. 2018. https://doi.org/10.1117/12.2287610

  23. Birn R, Bandettini P, Cox R, Jesmanowicz A, Shaker R. Magnetic field changes in the human brain due to swallowing or speaking. Magn Resonance Med. 1998;40(1):55–60. https://doi.org/10.1002/mrm.1910400108.

    Article  CAS  Google Scholar 

  24. Gracco V, Tremblay P, Pike B. Imaging speech production using fMRI. Neuroimage. 2005;26(1):294–301. https://doi.org/10.1016/j.neuroimage.2005.01.003.

    Article  PubMed  Google Scholar 

  25. Yücel M, Lühmann A, Scholkmann F, Gervain J, Dan I, Ayaz H, Boas D, Cooper R, Culver J, Elwell C, Eggebrecht A, Franceschini M, Grova C, Homae F, Lesage F, Obrig H, Tachtsidis I, Tak S, Tong Y, Torricelli A, et al. Best practices for fNIRS publications. Neurophotonics. 2021. https://doi.org/10.1117/1.NPh.8.1.012101.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nasreddine Z, Phillips N, Vedirian V, Charbonneau S, Whitehead V, Collin I, Cummings J, Chertkow H. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatrics Soc. 2005;53:695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x.

    Article  Google Scholar 

  27. Wan N, Hancock A, Moon T, Gillam R. A functional near-infrared spectroscopic investigation of speech production during reading. Hum Brain Mapp. 2018;39(3):1–10. https://doi.org/10.1002/hbm.23932.

    Article  Google Scholar 

  28. Ong C, Hancock A, Barrett T, Lee E, Wan N, Gillam R, Levin M, Twohig M. A preliminary investigation of the effect of acceptance and commitment therapy on neural activation in clinical perfectionism. J Contextual Behav Sci. 2020;18:152–61. https://doi.org/10.1016/j.jcbs.2020.09.007.

    Article  Google Scholar 

  29. Ding G, Mohr K, Orellana C, Hancock A, Juth S, Wada R, Gillam R. Use of functional near infrared spectroscopy to assess syntactic processing by monolingual and bilingual adults and children. Front Hum Neurosci. 2021;15:621025. https://doi.org/10.3389/fnhum.2021.621025.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schneider W, Eschman A, Zuccolotto A. E-prime user’s guide. Pittsburgh: Psychology Software Tools Inc; 2002.

    Google Scholar 

  31. Ye J, Tak S, Jang K, Jung J, Jang J. NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage. 2009;44(2):428–47. https://doi.org/10.1016/j.neuroimage.2008.08.036.

    Article  PubMed  Google Scholar 

  32. Jang K, Tak S, Jung J, Jang J, Jeong Y, Ye J. Wavelet minimum description length detrending for near-infrared spectroscopy. J Biomed Opt. 2009;14(3):034004. https://doi.org/10.1117/1.3127204.

    Article  PubMed  Google Scholar 

  33. Brigadoi S, Ceccherini L, Cutini S, Scarpa F, Scatturin P, Selb J, Gagnon L, Boas D, Cooper R. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. NeuroImage. 2014;85:181–91. https://doi.org/10.1016/j.neuroimage.2013.04.082.

    Article  PubMed  Google Scholar 

  34. Rorden C, Brett M. Stereotaxic display of brain lesions. Behav Neurol. 2000;12(4):191–200. https://doi.org/10.1155/2000/421719.

    Article  PubMed  Google Scholar 

  35. Singh A, Okamoto M, Dan H, Jurcak V, Dan I. Spatial registration of multichannel multi-subject fNIRS data to MNI space without MRI. Neuroimage. 2005;27(4):842–51. https://doi.org/10.1016/j.neuroimage.2005.05.019.

    Article  PubMed  Google Scholar 

  36. Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48. https://doi.org/10.18637/jss.v067.i01.

    Article  Google Scholar 

  37. R Core Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020.

    Google Scholar 

  38. Wickham H, Averick M, Bryan J, Chang W, McGowan L, Francois R, Grolemund G, Hayes A, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4(43):1686. https://doi.org/10.21105/joss.01686.

    Article  Google Scholar 

  39. Lenth R. emmeans: estimated marginal means, aka least-squares means. R package version 1.5.1. 2020. https://CRAN.R-project.org/package=emmeans

  40. Scholkmann F, Spichtig S, Muehlemann T, Wolf M. How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolations. Physiol Meas. 2010;31(5):649–62. https://doi.org/10.1088/0967-3334/31/5/004.

    Article  CAS  PubMed  Google Scholar 

  41. Meidenbauer K, Whan C, Cardenas-Iniguez C, Huppert T, Berman M. Load-dependent relationships between frontal fNIRS activity and performance: a data-driven PLS approach. Neuroimage. 2021;230(15):117795. https://doi.org/10.1016/j.neuroimage.2021.117795.

    Article  PubMed  Google Scholar 

  42. Huppert T, Hoge R, Diamond S, Franceschini M, Boas D. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Neuroimage. 2006;29(2):368–82. https://doi.org/10.1016/j.neuroimage.2005.08.065.

    Article  CAS  PubMed  Google Scholar 

  43. Causse M, Chua Z, Peysakhovich V, Del Campo N, Matton N. Mental workload and neural efficiency quantified in the prefrontal cortex using fNIRS. Sci Rep. 2017;7(1):1–15. https://doi.org/10.1038/s41598-017-05378-x.

    Article  CAS  Google Scholar 

  44. Sakatani K, Zie Y, Lichty W, Ki S, Zuo H. Language-activated cerebral blood oxygenation and hemodynamic changes of the left prefrontal cortex in poststroke ashasic patients: a near-infrared spectroscopy study. Stroke. 1998;29(7):1299–304. https://doi.org/10.1161/01.STR.29.7.1299.

    Article  CAS  PubMed  Google Scholar 

  45. Butler L, Kiran S, Tager-Flusberg H. Functional near-infrared spectroscopy in the study of speech and language impairment across the life span: a systematic review. Am J Speech-Lang Pathol. 2020;29(3):1674–701. https://doi.org/10.1044/2020_AJSLP-19-00050.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Iwanami A, Okajima Y, Ota H, Tani M, Yamada T, Hasimoro R, Kanai C, Watanabe H, Yamasue H, Kawakubo Y, Kato N. Task dependent prefrontal dysfunction in persons with Asperger’s disorder investigated with multi-channel near-infrared spectroscopy. Res Autism Spectr Disord. 2011;5(3):1187–93. https://doi.org/10.1016/j.rasd.2011.01.005.

    Article  Google Scholar 

  47. Kuwabara H, Kasai K, Takizawa R, Kawakubo Y, Yamasue H, Rogers M, Ishijima M, Watanabe K, Kato N. Decreased prefrontal activation during letter fluency task in adults with pervasive developmental disorders: a near-infrared spectroscopy study. Behav Brain Res. 2006;172(2):272–7. https://doi.org/10.1016/j.bbr.2006.05.020.

    Article  PubMed  Google Scholar 

  48. Rodriguez Merzagora A, Izzetoglu M, Onaral B, Schultheis M. Verbal working memory impairments following traumatic brain injury: an fNIRS investigation. Brain Imaging and Behav. 2014;8:446–59. https://doi.org/10.1007/s11682-013-9258-8.

    Article  Google Scholar 

  49. van de Rijt L, van Opstal J, Mylanue E, Straatman L, Hu H, Snik A, van Wanrooij M. Temporal cortex activation to audiovisual speech in normal-hearing and chochlear implant users measure with functional near-infrared spectroscopy. Front Hum Neurosci. 2016. https://doi.org/10.3389/fnhum.2016.00048.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kober S, Bauernfeind G, Woller C, Sampl M, Grieshofer P, Neuper C, Wood G. Hemodynamic signal changes accompanying execution and imagery of swallowing in patients with dysphagia: a single-case near-infrared spectroscopy study. Neurol. 2015;6:151. https://doi.org/10.3389/fneur.2015.00151.

    Article  Google Scholar 

  51. Hertrich I, Dietrich S, Ackermann H. The role of the supplementary motor area for speech and language processing. Neurosci Biobehav Rev. 2016;68:602–10. https://doi.org/10.1016/j.neubiorev.2016.06.030.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to Andrea Seagren, Katelin Pyfer, Travis Clark, Josie Givens, and Sage Rowley for their work as research assistants.

Funding

This study was funded by the Utah State University Research Catalyst program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie M. Knollhoff.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dr. Stephanie Knollhoff was previously employed by Utah State University during the time of data collection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knollhoff, S.M., Hancock, A.S., Barrett, T.S. et al. Cortical Activation of Swallowing Using fNIRS: A Proof of Concept Study with Healthy Adults. Dysphagia 37, 1501–1510 (2022). https://doi.org/10.1007/s00455-021-10403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-021-10403-3

Keywords

Navigation