Skip to main content
Log in

A Comparison of Visual Recognition of the Laryngopharyngeal Structures Between High and Standard Frame Rate Videos of the Fiberoptic Endoscopic Evaluation of Swallowing

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

The purpose of this study was to assess whether or not high frame rate (HFR) videos recorded using high-speed digital imaging (HSDI) improve the visual recognition of the motions of the laryngopharyngeal structures during pharyngeal swallow in fiberoptic endoscopic evaluation of swallowing (FEES). Five healthy subjects were asked to swallow 0.5 ml water under fiberoptic nasolaryngoscopy. The endoscope was connected to a high-speed camera, which recorded the laryngopharyngeal view throughout the swallowing process at 4000 frames/s (fps). Each HFR video was then copied and downsampled into a standard frame rate (SFR) video version (30 fps). Fifteen otorhinolaryngologists observed all of the HFR/SFR videos in random order and rated the four-point ordinal scale reflecting the degree of visual recognition of the rapid laryngopharyngeal structure motions just before the ‘white-out’ phenomenon. Significantly higher scores, reflecting better visibility, were seen for the HFR videos compared with the SFR videos for the following laryngopharyngeal structures: the posterior pharyngeal wall (p = 0.001), left pharyngeal wall (p = 0.015), right lateral pharyngeal wall (p = 0.035), tongue base (p = 0.005), and epiglottis tilting (p = 0.005). However, when visualized with HFR and SFR, ‘certainly clear observation’ of the laryngeal structures was achieved in <50% of cases, because all the motions were not necessarily captured in each video. These results demonstrate the use of HSDI in FEES makes the motion perception of the laryngopharyngeal structures during pharyngeal swallow easier in comparison to SFR videos with equivalent image quality due to the ability of HSDI to depict the laryngopharyngeal motions in a continuous manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Logemann JA. Evaluation and treatment of swallowing disorders. 2nd ed. Austin: PRO-ED, Inc.; 1998.

    Google Scholar 

  2. Logemann JA. Dysphagia: evaluation and treatment. Folia Phoniatr Logop. 1995;47(3):140–64.

    Article  CAS  PubMed  Google Scholar 

  3. McConnel FMS. Analysis of pressure generation and bolus transit during pharyngeal swallowing. Laryngoscope. 1988;98(1):71–8.

    Article  CAS  PubMed  Google Scholar 

  4. McConnel FM, Cerenko D, Jackson RT, Guffin TN Jr. Timing of major events of pharyngeal swallowing. Arch Otolaryngol Head Neck Surg. 1988;114(12):1413–8.

    Article  CAS  PubMed  Google Scholar 

  5. Tracy JF, Logemann JA, Kahrilas PJ, Jacob P, Kobara M, Krugler C. Preliminary observations on the effects of age on oropharyngeal deglutition. Dysphagia. 1989;4(2):90–4.

    Article  CAS  PubMed  Google Scholar 

  6. Périé S, Coiffier L, Laccourreye L, Hazebroucq V, Chaussade S, St Guily JL. Swallowing disorders in paralysis of the lower cranial nerves: a functional analysis. Ann Otol Rhinol Laryngol. 1999;108(6):606–11.

    Article  PubMed  Google Scholar 

  7. Oshima F, Yokozeki M, Hamanaka M, Imai K, Makino M, Kimura M, Fujimoto Y, Fujiu-Kurachi M. Prediction of dysphagia severity: an investigation of the dysphagia patterns in patients with lateral medullary infarction. Intern Med. 2013;52(12):1325–31.

    Article  PubMed  Google Scholar 

  8. Martin RE, Neary MA, Diamant NE. Dysphagia following anterior cervical spine surgery. Dysphagia. 1997;12(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  9. Pauloski BR, Rademaker AW, Lazarus C, Boeckxstaens G, Kahrilas PJ, Logemann JA. Relationship between manometric and videofluoroscopic measures of swallow function in healthy adults and patients treated for head and neck cancer with various modalities. Dysphagia. 2009;24(2):196–203.

    Article  PubMed  Google Scholar 

  10. Logemann JA. Role of the modified barium swallow in management of patients with dysphagia. Otolaryngol Head Neck Surg. 1997;116(3):335–8.

    Article  CAS  PubMed  Google Scholar 

  11. Palmer JB, Tanaka E, Siebens AA. Motions of the posterior pharyngeal wall in swallowing. Laryngoscope. 1988;98(4):414–7.

    Article  CAS  PubMed  Google Scholar 

  12. Leonard R, Belafsky PC, Rees CJ. Relationship between fluoroscopic and manometric measures of pharyngeal constriction: the pharyngeal constriction ratio. Ann Otol Rhinol Laryngol. 2006;115(12):897–901.

    Article  PubMed  Google Scholar 

  13. Langmore SE, Schatz K, Olsen N. Fiberoptic endoscopic examination of swallowing safety: a new procedure. Dysphagia. 1988;2(4):216–9.

    Article  CAS  PubMed  Google Scholar 

  14. Leder SB, Acton LM, Lisitano HL, Murray JT. Fiberoptic endoscopic evaluation of swallowing (FEES) with and without blue-dyed food. Dysphagia. 2005;20(2):157–62.

    Article  PubMed  Google Scholar 

  15. Langmore SE. Endoscopic evaluation and treatment of swallowing disorders. New York: Thieme; 2001.

    Google Scholar 

  16. Logemann JA, Rademaker AW, Pauloski BR, Ohmae Y, Kahrilas PJ. Normal swallowing physiology as viewed by videofluoroscopy and videoendoscopy. Folia Phoniatr Logop. 1998;50(6):311–9.

    Article  CAS  PubMed  Google Scholar 

  17. Périé S, Laccourreye L, Flahault A, Hazebroucq V, Chaussade S, St Guily JL. Role of videoendoscopy in assessment of pharyngeal function in oropharyngeal dysphagia: comparison with videofluoroscopy and manometry. Laryngoscope. 1998;108(11):1712–6.

    Article  PubMed  Google Scholar 

  18. Schuberth S, Hoppe U, Döllinger M, Lohscheller J, Eysholdt U. High-precision measurement of the vocal fold length and vibratory amplitudes. Laryngoscope. 2002;112(6):1043–9.

    Article  PubMed  Google Scholar 

  19. Imai T, Takimoto Y, Takeda N, Uno A, Inohara H, Shimada S. High-speed video-oculography for measuring three-dimensional rotation vectors of eye movements in mice. PLoS ONE. 2016;11(3):e0152307. doi:10.1371/journal.pone.0152307.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dobrev I, Furlong C, Cheng JT, Rosowski JJ. Full-field transient vibrometry of the human tympanic membrane by local phase correlation and high-speed holography. J Biomed Opt. 2014;19(9):096001-1–096001-12. doi:10.1117/1.JBO.19.9.096001.

    Article  Google Scholar 

  21. Iwahashi T, Ogawa M, Hosokawa K, Kato C, Inohara H. A detailed motion analysis of the angular velocity between the vocal folds during throat clearing using high-speed digital imaging. J Voice. 2016;30(6):770.e1–8.

    Article  Google Scholar 

  22. Günther U, Daum S, Zeitz M, Bojarski C. Capsule endoscopy: comparison of two different reading modes. Int J Colorectal Dis. 2012;27(4):521–5.

    Article  PubMed  Google Scholar 

  23. Koslowsky B, Jacob H, Eliakim R, Ader SN. PillCam ESO in esophageal studies: improved diagnostic yield of 14 frames per second (fps) compared with 4 fps. Endoscopy. 2006;38(1):27–30.

    Article  CAS  PubMed  Google Scholar 

  24. Kyriakos N, Karagiannis S, Galanis P, Liatsos C, Zouboulis-Vafiadis I, Georgiou E, Mavrogiannis C. Evaluation of four time-saving methods of reading capsule endoscopy videos. Eur J Gastroenterol Hepatol. 2012;24(11):1276–80.

    PubMed  Google Scholar 

  25. Wertheimer M. Experimentelle studien über das sehen von bewegung. Z Psychol. 1912;61:161–265.

    Google Scholar 

  26. Logemann JA, Rademaker AW, Pauloski BR, Ohmae Y, Kahrilas PJ. Interobserver agreement on normal swallowing physiology as viewed by videoendoscopy. Folia Phoniatr Logop. 1999;51(3):91–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

No fund supported this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ogawa.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 416 kb)

Supplementary material 2 (MP4 2032 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghdam, M.A., Ogawa, M., Iwahashi, T. et al. A Comparison of Visual Recognition of the Laryngopharyngeal Structures Between High and Standard Frame Rate Videos of the Fiberoptic Endoscopic Evaluation of Swallowing. Dysphagia 32, 617–625 (2017). https://doi.org/10.1007/s00455-017-9803-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-017-9803-5

Keywords

Navigation