Skip to main content
Log in

An \(\mathcal {O}(3.82^{k})\) Time \(\textsf {FPT}\) Algorithm for Convex Flip Distance

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let \(\mathcal{P}\) be a convex polygon in the plane, and let \(\mathcal{T}\) be a triangulation of \(\mathcal{P}\). An edge e in \(\mathcal{T}\) is called a diagonal if it is shared by two triangles in \(\mathcal{T}\). A flip of a diagonal e is the operation of removing e and adding the opposite diagonal of the resulting quadrilateral to obtain a new triangulation of \(\mathcal{P}\) from \(\mathcal{T}\). The flip distance between two triangulations of \(\mathcal{P}\) is the minimum number of flips needed to transform one triangulation into the other. The Convex  Flip  Distance problem asks if the flip distance between two given triangulations of \(\mathcal{P}\) is at most k, for some given parameter \(k \in \mathbb {N}\). It has been an important open problem to decide whether Convex  Flip  Distance is NP-hard. In this paper, we present an \(\textsf {FPT}\) algorithm for the Convex  Flip  Distance problem that runs in time \(\mathcal {O}(3.82^{k})\) and uses polynomial space, where k is the number of flips. This algorithm significantly improves the previous best \(\textsf {FPT}\) algorithms for the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aichholzer, O., Hurtado, F., Noy, M.: A lower bound on the number of triangulations of planar point sets. Comput. Geom. Theory Appl. 29(2), 135–145 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aichholzer, O., Mulzer, W., Pilz, A.: Flip distance between triangulations of a simple polygon is NP-complete. Discrete Comput. Geom. 54(2), 368–389 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonnin, A., Pallo, J.-M.: A shortest path metric on unlabeled binary trees. Pattern Recognit. Lett. 13(6), 411–415 (1992)

    Article  Google Scholar 

  4. Bosch-Calvo, M., Kelk, S.: An improved kernel for the flip distance problem on simple convex polygons. Inf. Process. Lett. 182, # 106381 (2023)

  5. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. Theory Appl. 42(1), 60–80 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Y.-J., Chang, J.-M., Wang, Y.-L.: An efficient algorithm for estimating rotation distance between two binary trees. Int. J. Comput. Math. 82, 1095–1106 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cleary, S., John, K.S.: Rotation distance is fixed-parameter tractable. Inf. Process. Lett. 109(16), 918–922 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cleary, S., John, K.S.: A linear-time approximation algorithm for rotation distance. J. Graph Algorithms Appl. 14, 385–390 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Culik, K., Wood, D.: A note on some tree similarity measures. Inf. Process. Lett. 15(1), 39–42 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)

    Book  MATH  Google Scholar 

  11. Feng, Q., Li, S., Meng, X., Wang, J.: An improved FPT algorithm for the flip distance problem. Inf. Comput. 281, # 104708 (2021)

  12. Fordham, S., Cleary, S.: Minimal length elements of Thompson’s groups \(F(p)\). Geom. Dedicata 141, 163–180 (2007)

  13. Hanke, S., Ottmann, T., Schuierer, S.: The edge-flipping distance of triangulations. J. Univers. Comput. Sci. 2(8), 570–579 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput. Geom. 22(3), 333–346 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kahn, A.B.: Topological sorting of large networks. Commun. ACM 5(11), 558–562 (1962)

    Article  MATH  Google Scholar 

  16. Kanj, I., Sedgwick, E., Xia, G.: Computing the flip distance between triangulations. Discrete Comput. Geom. 58(2), 313–344 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kanj, I., Xia, G.: Flip distance is in FPT time \({O}(n+ k \cdot c^k)\). In: 32nd International Symposium on Theoretical Aspects of Computer Science (Garching 2015). Leibniz Int. Proc. Inform., vol 30, pp. 500–512. Leibniz-Zent., Wadern (2015)

  18. Lawson, C.: Transforming triangulations. Discrete Math. 3(4), 365–372 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, M., Zhang, L.: Better approximation of diagonal-flip transformation and rotation transformation. In: 4th Annual International Conference on Computing and Combinatorics (Taipei 1998). Lecture Notes in Computer Science, vol. 1449, pp. 85–94. Springer, Berlin (1998)

  20. Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point set is NP-complete. Comput. Geom. Theory Appl. 49, 17–23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lucas, J.: An improved kernel size for rotation distance in binary trees. Inf. Process. Lett. 110(12), 481–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luccio, F., Pagli, L.: On the upper bound on the rotation distance of binary trees. Inf. Process. Lett. 31(2), 57–60 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, New York (2006)

    Book  MATH  Google Scholar 

  24. Pallo, J.: On the rotation distance in the lattice of binary trees. Inf. Process. Lett. 25(6), 369–373 (1987)

    Article  MathSciNet  Google Scholar 

  25. Pilz, A.: Flip distance between triangulations of a planar point set is APX-hard. Comput. Geom. Theory Appl. 47(5), 589–604 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pournin, L.: The diameter of associahedra. Adv. Math. 259, 13–42 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sleator, D., Tarjan, R., Thurston, W.: Rotation distance, triangulations, and hyperbolic geometry. J. Am. Math. Soc. 1, 647–681 (1988)

  28. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Xia.

Ethics declarations

Algorithm

The algorithm presented in this paper has been implemented in C++ and is available in the GitHub Repository, https://github.com/syccxcc/FlipDistance.

Additional information

Editor in Charge: Csaba D. Tóth

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xia, G. An \(\mathcal {O}(3.82^{k})\) Time \(\textsf {FPT}\) Algorithm for Convex Flip Distance. Discrete Comput Geom (2023). https://doi.org/10.1007/s00454-023-00596-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00454-023-00596-9

Keywords

Mathematics Subject Classification

Navigation