Skip to main content
Log in

Some ‘Converses’ to Intrinsic Linking Theorems

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

A low-dimensional version of our main result is the following ‘converse’ of the Conway–Gordon–Sachs Theorem on intrinsic linking of the graph \(K_6\) in 3-space: For any integer z there are six points 1, 2, 3, 4, 5, 6 in 3-space, of which every two ij are joined by a polygonal line ij, the interior of one polygonal line is disjoint with any other polygonal line, the linking number of any pair of disjoint 3-cycles except for \(\{123,456\}\) is zero, and for the exceptional pair \(\{123,456\}\) is \(2z+1\). We prove a higher-dimensional analogue, which is a ‘converse’ of a lemma by Segal–Spież.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We are grateful to Florian Frick for allowing us to present this proof based on an idea he suggested. Alternative (earlier) proofs are presented in §3 and in [4, § 4–5].

  2. The condition \(\ell <k\) is present in [11, Lem. 1.1] but is not used in the proof.

References

  1. Conway, J.H., Gordon, C.McA.: Knots and links in spatial graphs. J. Graph Theory 7(4), 445–453 (1983)

  2. Filakovský, M., Wagner, U., Zhechev, S.: Embeddability of simplicial complexes is undecidable. In: 31st ACM-SIAM Symposium on Discrete Algorithms (Salt Lake City 2020), pp. 767–785. SIAM, Philadelphia (2020)

  3. Garaev, T.R.: On drawing \(K_5\) minus an edge in the plane (2023). arXiv:2303.14503

  4. Karasev, R., Skopenkov, A.: Some ‘converses’ to intrinsic linking theorems (2022). arXiv:2008.02523v3

  5. Lovász, L., Schrijver, A.: A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs. Proc. Amer. Math. Soc. 126(5), 1275–1285 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Matoušek, J.: Using the Borsuk–Ulam Theorem. Universitext. Springer, Berlin (2003)

    MATH  Google Scholar 

  7. Matoušek, J., Tancer, M., Wagner, U.: Hardness of embedding simplicial complexes in \({\mathbb{R}}^{d}\). J. Eur. Math. Soc. 13(2), 259–295 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Repovš, D., Skopenkov, A.B.: New results on embeddings of polyhedra and manifolds into Euclidean spaces. Russian Math. Surveys 54(6), 1149–1196 (1999)

    Article  MathSciNet  Google Scholar 

  9. Sachs, H.: On spatial representations of finite graphs. In: Finite and Infinite Sets (Eger 1981). Colloq. Math. Soc. János Bolyai, vol. 37, pp. 649–662. North-Holland, Amsterdam (1984)

  10. Segal, J., Skopenkov, A., Spież, S.: Embeddings of polyhedra in \({\textbf{R}}^m\) and the deleted product obstruction. Topology Appl. 85(1–3), 335–344 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Segal, J., Spież, S.: Quasi embeddings and embeddings of polyhedra in \({\bf R}^m\). Topology Appl. 45(3), 275–282 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Seifert, H., Threlfall, W.: A Textbook of Topology. Pure and Applied Mathematics, vol. 89. Academic Press, New York–London (1980)

  13. Skopenkov, A.: On the deleted product criterion for embeddability in \({\bf R}^m\). Proc. Amer. Math. Soc. 126(8), 2467–2476 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Skopenkov, A.: On the Haefliger–Hirsch–Wu invariants for embeddings and immersions. Comment. Math. Helv. 77(1), 78–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Skopenkov, A.: Embedding and knotting of manifolds in Euclidean spaces (2006). arXiv:math/0604045

  16. Skopenkov, A.B.: Embedding and knotting of manifolds in Euclidean spaces. In: Surveys in Contemporary Mathematics. London Math. Soc. Lecture Note Ser., vol. 347, pp. 248–342. Cambridge University Press, Cambridge (2008)

  17. Skopenkov, A.: A user’s guide to the topological Tverberg conjecture. Russian Math. Surveys 73(2), 323–353 (2018). (abridged earlier published version of [21])

  18. Skopenkov, A.: Extendability of simplicial maps is undecidable (2020). arXiv:2008.00492

  19. Skopenkov, A.: High codimension links. Bull. Man. Atl. (2020). http://www.map.mpim-bonn.mpg.de/High_codimension_links

  20. Skopenkov, A.: Realizability of hypergraphs and intrinsic linking theory (2022). arXiv:1402.0658v5

  21. Skopenkov, A.: A user’s guide to the topological Tverberg conjecture (2022), arXiv:1605.05141v5

  22. Skopenkov, A.: Extendability of simplicial maps is undecidable. Discrete Comput. Geom. 69(1), 250–259 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  23. Skopenkov, A.: Algebraic Topology from Algorithmic Standpoint. Draft of a book (mostly in Russian). http://www.mccme.ru/circles/oim/algor.pdf

  24. Skopenkov, A., Tancer, M.: Hardness of almost embedding simplicial complexes in \({\mathbb{R}}^{d}\). Discrete Comput. Geom. 61(2), 452–463 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Taniyama, K.: Higher dimensional links in a simplicial complex embedded in a sphere. Pacific J. Math. 194(2), 465–467 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weber, C.: Plongements de polyèdres dans le domain metastable. Comment. Math. Helv. 42, 1–27 (1967)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiy Skopenkov.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We are grateful to Florian Frick, Timur Garaev, and the anonymous referees for helpful discussions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasev, R., Skopenkov, A. Some ‘Converses’ to Intrinsic Linking Theorems. Discrete Comput Geom 70, 921–930 (2023). https://doi.org/10.1007/s00454-023-00505-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-023-00505-0

Keywords

Mathematics Subject Classification

Navigation