Skip to main content
Log in

Reconstructing d-Manifold Subcomplexes of Cubes from Their \((\lfloor d/2 \rfloor + 1)\)-Skeletons

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

In 1984, Dancis proved that any d-dimensional simplicial manifold is determined by its \((\lfloor d/2\rfloor +1)\)-skeleton. This paper adapts his proof to the setting of cubical complexes that can be embedded into a cube of arbitrary dimension. Under some additional conditions (for example, if the cubical manifold is a sphere), the result can be tightened to the \(\lceil {d}/2\rceil \)-skeleton when \(d\ge 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ardila, F., Owen, M., Sullivant, S.: Geodesics in \({\rm CAT}(0)\) cubical complexes. Adv. Appl. Math. 48(1), 142–163 (2012)

    Article  MathSciNet  Google Scholar 

  2. Babson, E.K., Billera, L.J., Chan, C.S.: Neighborly cubical spheres and a cubical lower bound conjecture. Isr. J. Math. 102, 297–315 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bayer, M.M.: Graphs, skeleta and reconstruction of polytopes. Acta Math. Hung. 155(1), 61–73 (2018)

    Article  MathSciNet  Google Scholar 

  4. Blass, J., Holsztyński, W.: Cubical polyhedra and homotopy. III. Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 53, 275–279 (1972)

    MathSciNet  MATH  Google Scholar 

  5. Dancis, J.: Triangulated \(n\)-manifolds are determined by their \([n/2]+1\)-skeletons. Topology Appl. 18(1), 17–26 (1984)

    Article  MathSciNet  Google Scholar 

  6. Dolbilin, N.P., Shtan’ko, M.A., Shtogrin, M.I.: Cubic manifolds in lattices. Izv. Ross. Akad. Nauk Ser. Mat. 58(2), 93–107 (1994). (in Russian)

    MathSciNet  MATH  Google Scholar 

  7. Ehrenborg, R., Hetyei, G.: Generalizations of Baxter’s theorem and cubical homology. J. Comb. Theory Ser. A 69(2), 233–287 (1995)

    Article  MathSciNet  Google Scholar 

  8. Funar, L.: Cubulations, immersions, mappability and a problem of Habegger. Ann. Sci. École Norm. Sup. 32(5), 681–700 (1999)

    Article  MathSciNet  Google Scholar 

  9. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  10. Havel, I., Morávek, J.: \(B\)-valuations of graphs. Czech. Math. J. 22(97), 338–351 (1972)

    Article  MathSciNet  Google Scholar 

  11. Joswig, M., Rörig, T.: Neighborly cubical polytopes and spheres. Isr. J. Math. 159, 221–242 (2007)

    Article  MathSciNet  Google Scholar 

  12. Joswig, M., Ziegler, G.M.: Neighborly cubical polytopes. Discrete Comput. Geom. 24(2–3), 325–344 (2000)

    Article  MathSciNet  Google Scholar 

  13. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Applied Mathematical Sciences, vol. 157. Springer, New York (2004)

    MATH  Google Scholar 

  14. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Menlo Park (1984)

    MATH  Google Scholar 

  15. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    Book  Google Scholar 

Download references

Acknowledgements

This research was partially supported by a graduate fellowship from NSF grant DMS-1664865. We thank Steven Klee, Margaret Bayer, Raman Sanyal, the anonymous reviewers, and especially Isabella Novik for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rowan Rowlands.

Additional information

Editor in charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowlands, R. Reconstructing d-Manifold Subcomplexes of Cubes from Their \((\lfloor d/2 \rfloor + 1)\)-Skeletons. Discrete Comput Geom 67, 492–502 (2022). https://doi.org/10.1007/s00454-021-00321-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-021-00321-4

Keywords

Mathematics Subject Classification

Navigation