Skip to main content
Log in

Spherical Cap Discrepancy of the Diamond Ensemble

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

In Beltrán and Etayo (J. Complexity 59, # 101471 (2020)) the authors presented a family of points on the sphere \(\mathbb {S}^{2}\) depending on many parameters, called the Diamond ensemble. In this paper we compute the spherical cap discrepancy of the Diamond ensemble as well as some other quantities. We also define an area regular partition on the sphere where each region contains exactly one point of the set. For a concrete choice of parameters, we prove that the Diamond ensemble provides the best spherical cap discrepancy, known until now for a deterministic family of points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aistleitner, C., Brauchart, J.S., Dick, J.: Point sets on the sphere \(\mathbb{S}^2\) with small spherical cap discrepancy. Discrete Comput. Geom. 48(4), 990–1024 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Alexander, R.: On the sum of distances between \(n\) points on a sphere. Acta Math. Acad. Sci. Hungar. 23, 443–448 (1972)

    Article  MathSciNet  Google Scholar 

  3. Alishahi, K., Zamani, M.: The spherical ensemble and uniform distribution of points on the sphere. Electron. J. Probab. 20, # 23 (2015)

  4. Beck, J.: Some upper bounds in the theory of irregularities of distribution. Acta Arith. 43(2), 115–130 (1984)

    Article  MathSciNet  Google Scholar 

  5. Beck, J.: Sums of distances between points on a sphere–an application of the theory of irregularities of distribution to discrete geometry. Mathematika 31(1), 33–41 (1984)

    Article  MathSciNet  Google Scholar 

  6. Beck, J., Chen, W.W.L.: Irregularities of Distribution. Cambridge Tracts in Mathematics, vol. 89. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  7. Beltrán, C., Marzo, J., Ortega-Cerdà, J.: Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres. J. Complex. 37, 76–109 (2016)

    Article  MathSciNet  Google Scholar 

  8. Beltrán, C., Etayo, U.: The Diamond ensemble: a constructive set of spherical points with small logarithmic energy. J. Complex. 59, # 101471 (2020)

  9. Bilyk, D., Dai, F., Matzke, R.: The Stolarsky principle and energy optimization on the sphere. Constr. Approx. 48(1), 31–60 (2018)

    Article  MathSciNet  Google Scholar 

  10. Bondarenko, A., Radchenko, D., Viazovska, M.: Well-separated spherical designs. Constr. Approx. 41(1), 93–112 (2015)

    Article  MathSciNet  Google Scholar 

  11. Bourgain, J., Lindenstrauss, J.: Distribution of points on spheres and approximation by zonotopes. Israel J. Math. 64(1), 25–31 (1988)

    Article  MathSciNet  Google Scholar 

  12. Brauchart, J.S., Dick, J.: A simple proof of Stolarsky’s invariance principle. Proc. Am. Math. Soc. 141(6), 2085–2096 (2013)

    Article  MathSciNet  Google Scholar 

  13. Brauchart, J.S., Grabner, P.J.: Distributing many points on spheres: minimal energy and designs. J. Complex. 31(3), 293–326 (2015)

    Article  MathSciNet  Google Scholar 

  14. Dragnev, P.D.: On the separation of logarithmic points on the sphere. In: Approximation Theory X (St. Louis 2001). Innov. Appl. Math. Vanderbilt University Press, Nashville (2002)

  15. Feige, U., Schechtman, G.: On the optimality of the random hyperplane rounding technique for MAX CUT. Random Struct. Algorithms 20(3), 403–440 (2002)

    Article  MathSciNet  Google Scholar 

  16. Hardin, D.P., Michaels, T., Saff, E.B.: A comparison of popular point configurations on \(\mathbb{S}^2\). Dolomites Res. Notes Approx. 9, 16–49 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Pure and Applied Mathematics. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  18. Kuijlaars, A.B.J., Saff, E.B.: Asymptotics for minimal discrete energy on the sphere. Trans. Am. Math. Soc. 350(2), 523–538 (1998)

    Article  MathSciNet  Google Scholar 

  19. Leopardi, P.: Distributing Points on the Sphere: Partitions, Separation, Quadrature and Energy. PhD thesis, University of New South Wales (2007). https://maths-people.anu.edu.au/~leopardi/Leopardi-Sphere-PhD-Thesis.pdf

  20. Marzo, J., Mas, A.: Discrepancy of minimal Riesz energy points. Constr. Approx. (2021). https://doi.org/10.1007/s00365-021-09534-5

  21. Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1(6), 647–662 (1994)

    Article  MathSciNet  Google Scholar 

  22. Smale, S.: Mathematical problems for the next century. Math. Intelligencer 20(2), 7–15 (1998)

    Article  MathSciNet  Google Scholar 

  23. Stolarsky, K.B.: Sums of distances between points on a sphere. II. Proc. Am. Math. Soc. 41, 575–582 (1973)

    Article  MathSciNet  Google Scholar 

  24. Zhou, Y.: Arrangements of Points on the Sphere. PhD thesis, University of South Florida (1995)

Download references

Acknowledgements

I would like to thank Peter Grabner for our discussions on the topic and for introducing me to the book [6], it was such a nice reading. I also want to thank Johann Brauchart for his corrections on the first version of this manuscript and the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujué Etayo.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author has been supported by the Austrian Science Fund FWF project F5503 (part of the Special Research Program (SFB) Quasi-Monte Carlo Methods: Theory and Applications), by MTM2017-83816-P from the Spanish Ministry of Science MICINN, and by 21.SI01.64658 from Universidad de Cantabria and Banco de Santander.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etayo, U. Spherical Cap Discrepancy of the Diamond Ensemble. Discrete Comput Geom 66, 1218–1238 (2021). https://doi.org/10.1007/s00454-021-00305-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-021-00305-4

Keywords

Mathematics Subject Classification

Navigation