Skip to main content

Advertisement

Log in

Upper Energy Bounds for Spherical Designs of Relatively Small Cardinalities

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We derive upper bounds for the potential energy of spherical designs of cardinality close to the Delsarte–Goethals–Seidel bound. These bounds are obtained by linear programming with use of the Hermite interpolating polynomial of the potential function in suitable nodes. Numerical computations show that the results are quite close to certain lower energy bounds confirming that spherical designs are, in a sense, energy efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Clearly, it is enough to have positive only the first three derivatives.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  2. Bannai, E., Bannai, E.: A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Comb. 30(6), 1392–1425 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bannai, E., Damerell, R.M.: Tight spherical designs I. J. Math. Soc. Jpn. 31(1), 199–207 (1979)

    Article  MathSciNet  Google Scholar 

  4. Bannai, E., Damerell, R.M.: Tight spherical designs II. J. Lond. Math. Soc. 21(1), 13–30 (1980)

    Article  MathSciNet  Google Scholar 

  5. Bannai, E., Bannai, E., Tanaka, H., Zhu, Y.: Design theory from the viewpoint of algebraic combinatorics. Graphs Comb. 33(1), 1–41 (2017)

    Article  MathSciNet  Google Scholar 

  6. Bondarenko, A., Radchenko, D., Viazovska, M.: Optimal asymptotic bounds for spherical designs. Ann. Math. 178(2), 443–452 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bondarenko, A., Radchenko, D., Viazovska, M.: Well-separated spherical designs. Constr. Approx. 41(1), 93–112 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bondarenko, A.V., Viazovska, M.S.: New asymptotic estimates for spherical designs. J. Approx. Theory 152(1), 101–106 (2008)

    Article  MathSciNet  Google Scholar 

  9. Boumova, S., Boyvalenkov, P., Kulina, H., Stoyanova, M.: Polynomial techniques for investigation of spherical designs. Des. Codes Crypt. 51(3), 275–288 (2009)

    Article  MathSciNet  Google Scholar 

  10. Boyvalenkov, B.: Extremal polynomials for obtaining bounds for spherical codes and designs. Discrete Comput. Geom. 14(2), 167–183 (1995)

    Article  MathSciNet  Google Scholar 

  11. Boyvalenkov, P., Boumova, S., Danev, D.: Necessary conditions for existence of some designs in polynomial metric spaces. Eur. J. Comb. 20(3), 213–225 (1999)

    Article  MathSciNet  Google Scholar 

  12. Boyvalenkov, P., Danev, D., Nikova, S.: Nonexistence of certain spherical designs of odd strengths and cardinalities. Discrete Comput. Geom. 21(1), 143–156 (1999)

    Article  MathSciNet  Google Scholar 

  13. Boyvalenkov, P., Dragnev, P., Hardin, D., Saff, E., Stoyanova, M.: Universal upper and lower bounds for potential energy of spherical designs. Dolom. Res. Notes Approx. 8, 51–65 (2015)

    Google Scholar 

  14. Boyvalenkov, P.G., Dragnev, P.D., Hardin, D.P., Saff, E.B., Stoyanova, M.M.: Universal lower bounds for potential energy of spherical codes. Constr. Approx. 44(3), 385–415 (2016)

    Article  MathSciNet  Google Scholar 

  15. Boyvalenkov, P., Nikova, S.: New lower bounds for some spherical designs. In: Cohen, G., Litsyn, S., Lobstein, A., Zémor, G. (eds.) Algebraic Coding. Lecture Notes in Computer Science, pp. 207–216. Springer, Berlin (1994)

    Google Scholar 

  16. Chan, F., O’Neill, E.: Feasibility Study of a Quadrilateralized Spherical Cube Earth Data Base. Defense Technical Information Base (1975)

  17. Cohn, H., Conway, J., Elkies, N., Kumar, A.: The \(D_4\) root system is not universally optimal. Exp. Math. 16(3), 313–320 (2007)

    Article  MathSciNet  Google Scholar 

  18. Cohn, H., Kumar, A.: Universally optimal distribution of points on spheres. J. Am. Math. Soc. 20(1), 99–148 (2006)

    Article  MathSciNet  Google Scholar 

  19. Davis, P.J.: Interpolation and Approximation. Blaisdell Publishing Company, New York (1963)

    Google Scholar 

  20. Delsarte, P., Goethals, J.-M., Seidel, J.J.: Spherical codes and designs. Geom. Dedic. 6(3), 363–388 (1977)

    Article  MathSciNet  Google Scholar 

  21. Delsarte, P., Levenshtein, V.I.: Association schemes and coding theory. IEEE Trans. Inform. Theory 44(6), 2477–2504 (1998)

    Article  MathSciNet  Google Scholar 

  22. Grabner, P.J., Stepanyuk, T.A.: Comparison of probabilistic and deterministic point sets. J. Approx. Theory 239, 128–143 (2019)

    Article  MathSciNet  Google Scholar 

  23. Hesse, K.: The \(s\)-energy of spherical designs on \({\mathbb{S}}^2\). Adv. Comput. Math. 30(1), 37–59 (2009)

    Article  MathSciNet  Google Scholar 

  24. Hesse, K., Leopardi, P.: The Coulomb energy of spherical designs on \({\mathbb{S}}^2\). Adv. Comput. Math. 28(4), 331–354 (2008)

    Article  MathSciNet  Google Scholar 

  25. Koorwinder, T.: The addition formula for Jacobi polynomials and spherical harmonics. SIAM J. Appl. Math. 25, 236–246 (1973)

    Article  MathSciNet  Google Scholar 

  26. Kuijlaars, A.: The minimal number of nodes in Chebyshev type quadrature formulas. Indag. Math. 4(3), 339–362 (1993)

    Article  MathSciNet  Google Scholar 

  27. Kuijlaars, A.: Chebyshev-type quadrature for Jacobi weight functions. J. Comput. Appl. Math. 57(1–2), 171–180 (1995)

    Article  MathSciNet  Google Scholar 

  28. Levenshtein, V.I.: Designs as maximum codes in polynomial metric spaces. Acta Appl. Math. 25(1–2), 1–82 (1992)

    Article  MathSciNet  Google Scholar 

  29. Levenshtein, V.I.: Universal bounds for codes and designs. In: Pless, V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, pp. 499–648. Elsevier, Amsterdam (1998)

    Google Scholar 

  30. Lyubich, Yu.I., Vaserstein, L.N.: Isometric embeddings between classical Banach spaces, cubature formulas, and spherical designs Geom. Dedicata 47(3), 327–362 (1993)

  31. Nikova, S., Nikov, V.: Improvement of the Delsarte bound for \(\tau \)-designs when it is not the best bound possible. Des. Codes Cryptogr. 28(2), 201–222 (2003)

    Article  MathSciNet  Google Scholar 

  32. Rabau, P., Bajnok, B.: Bounds for the number of nodes in Chebyshev type quadrature formulas. J. Approx. Theory 67(2), 199–214 (1991)

    Article  MathSciNet  Google Scholar 

  33. Reznick, B.: Sums of Even Powers of Real Linear Forms. American Mathematical Society, Providence (1992)

    Book  Google Scholar 

  34. Ringler, T., Petersen, M., Higdonc, R.L., Jacobsen, D., Jones, P.W., Maltrud, M.: A multi-resolution approach to global ocean modeling. Ocean Modelling 69, 211–232 (2013)

    Article  Google Scholar 

  35. Sadourny, P., Arakawa, A., Mintz, Y.: Integration of the non-divergent barotropic vorticity equation with an icosahedral–hexagonal grid for the sphere. Monthly Weather Rev. 96, 6 (1968)

    Article  Google Scholar 

  36. Stoyanova, M.: On the structure of some spherical codes and designs. PhD thesis. Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences (2009) (in Bulgarian)

  37. Szegő, G.: Orthogonal Polynomials. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence (1939)

    Google Scholar 

  38. White, D., Kimerling, A.J., Overton, W.S.: Cartographic and geometric components of a global sampling design for environmental monitoring. Cartogr. Geogr. Inf. Syst. 19(1), 5–22 (1992)

    Google Scholar 

  39. Yudin, V.A.: Lower bounds for spherical designs. Izv. Math. 61(3), 673–683 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their useful remarks. Peter Boyvalenkov is also with Faculty of Engineering, South-Western University, Blagoevgrad, Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Boyvalenkov.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of the first two authors was supported, in part, by Bulgarian NSF Contract DN02/2-2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyvalenkov, P., Delchev, K. & Jourdain, M. Upper Energy Bounds for Spherical Designs of Relatively Small Cardinalities. Discrete Comput Geom 65, 244–260 (2021). https://doi.org/10.1007/s00454-019-00123-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00123-9

Keywords

Mathematics Subject Classification

Navigation