Skip to main content
Log in

Strong Discrete Morse Theory and Simplicial L–S Category: A Discrete Version of the Lusternik–Schnirelmann Theorem

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We prove a discrete version of the Lusternik–Schnirelmann (L–S) theorem for discrete Morse functions and the recently introduced simplicial L–S category of a simplicial complex. To accomplish this, a new notion of critical object of a discrete Morse function is presented, which generalizes the usual concept of critical simplex (in the sense of R. Forman). We show that the non-existence of such critical objects guarantees the strong homotopy equivalence (in the Barmak and Minian’s sense) between the corresponding sublevel complexes. Finally, we establish that the number of critical objects of a discrete Morse function defined on K is an upper bound for the non-normalized simplicial L–S category of K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aaronson, S., Scoville, N.A.: Lusternik–Schnirelmann for simplicial complexes. Ill. J. Math. 57(3), 743–753 (2013)

    Article  MathSciNet  Google Scholar 

  2. Barmak, J.A.: Algebraic Topology of Finite Topological Spaces and Applications. Lecture Notes in Mathematics, vol. 2032. Springer, Heidelberg (2011)

    Book  Google Scholar 

  3. Barmak, J.A., Minian, E.G.: Strong homotopy types, nerves and collapses. Discrete Comput. Geom. 47(2), 301–328 (2012)

    Article  MathSciNet  Google Scholar 

  4. Chávez, M.-J., Lawrencenko, S., Quintero, A., Villar, M.-T.: Irreducible triangulations of the Möbius band. Bul. Acad. Ştiinţe Repub. Mold. Mat. 2014(2), 44–50 (2014)

    MATH  Google Scholar 

  5. Cohen, M.M.: A Course in Simple-Homotopy Theory. Graduate Texts in Mathematics, vol. 10. Springer, New York (1973)

    Book  Google Scholar 

  6. Cornea, O., Lupton, G., Oprea, J., Tanré, D.: Lusternik–Schnirelmann Category. Mathematical Surveys and Monographs, vol. 103. American Mathematical Society, Providence (2003)

    Book  Google Scholar 

  7. Curry, J., Ghrist, R., Nanda, V.: Discrete Morse theory for computing cellular sheaf cohomology. Found. Comput. Math. 16(4), 875–897 (2016)

    Article  MathSciNet  Google Scholar 

  8. Fernández-Ternero, D., Macías-Virgós, E., Minuz, E., Vilches, J.A.: Simplicial Lusternik–Schnirelmann category. Publ. Mat. 63(1), 265–293 (2019)

    Article  MathSciNet  Google Scholar 

  9. Fernández-Ternero, D., Macías-Virgós, E., Vilches, J.A.: Lusternik–Schnirelmann category of simplicial complexes and finite spaces. Topol. Appl. 194, 37–50 (2015)

    Article  MathSciNet  Google Scholar 

  10. Forman, R.: Morse Theory for cell complexes. Adv. Math. 134(1), 90–145 (1998)

    Article  MathSciNet  Google Scholar 

  11. Lusternik, L., Schnirelmann, L.: Méthodes Topologiques dans les Problèmes Variationnels. Herman, Paris (1934)

    MATH  Google Scholar 

  12. Milnor, J.: Morse Theory. Based on Lecture Notes by M. Spivak and R. Wells. Annals of Mathematics Studies, vol. 51. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  13. Munkres, J.R.: Elements of Algebraic Topology. Addison Wesley, Menlo Park (1984)

    MATH  Google Scholar 

  14. Palais, R.S.: Lusternik–Schnirelmann theory on Banach manifolds. Topology 5, 115–132 (1966)

    Article  MathSciNet  Google Scholar 

  15. Reina-Molina, R., Díaz-Pernil, D., Real, P., Berciano, A.: Membrane parallelism for discrete Morse theory applied to digital images. Appl. Algebra Eng. Commun. Comput. 26(1–2), 49–71 (2015)

    Article  MathSciNet  Google Scholar 

  16. Scoville, N.A., Swei, W.: On the Lusternik–Schnirelmann category of a simplicial map. Topol. Appl. 216, 116–128 (2017)

    Article  MathSciNet  Google Scholar 

  17. Tanaka, K.: Lusternik–Schnirelmann category for cell complexes and posets. Ill. J. Math. 59(3), 623–636 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desamparados Fernández-Ternero.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first and fourth authors were partially supported by MINECO and FEDER Research Project MTM2015-65397-P and Junta de Andalucía Research Groups FQM-326 and FQM-189. The second author was partially supported by MINECO and FEDER Research Project MTM2016-78647-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Ternero, D., Macías-Virgós, E., Scoville, N.A. et al. Strong Discrete Morse Theory and Simplicial L–S Category: A Discrete Version of the Lusternik–Schnirelmann Theorem. Discrete Comput Geom 63, 607–623 (2020). https://doi.org/10.1007/s00454-019-00116-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00116-8

Keywords

Mathematics Subject Classification

Navigation