Skip to main content
Log in

Quickest Visibility Queries in Polygonal Domains

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let s be a point in a polygonal domain \({\mathcal {P}}\) of \(h-1\) holes and n vertices. We consider a quickest visibility query problem. Given a query point q in \({\mathcal {P}}\), the goal is to find a shortest path in \({\mathcal {P}}\) to move from s to seeq as quickly as possible. Previously, Arkin et al. (SoCG 2015) built a data structure of size \(O(n^22^{\alpha (n)}\log n)\) that can answer each query in \(O(K\log ^2 n)\) time, where \(\alpha (n)\) is the inverse Ackermann function and K is the size of the visibility polygon of q in \({\mathcal {P}}\) (and K can be \(\varTheta (n)\) in the worst case). In this paper, we present a new data structure of size \(O(n\log h + h^2)\) that can answer each query in \(O(h\log h\log n)\) time. Our result improves the previous work when h is relatively small. In particular, if h is a constant, then our result even matches the best result for the simple polygon case (i.e., \(h=1\)), which is optimal. As a by-product, we also have a new algorithm for a shortest-path-to-segment query problem. Given a query line segment \(\tau \) in \({\mathcal {P}}\), the query seeks a shortest path from s to all points of \(\tau \). Previously, Arkin et al. gave a data structure of size \(O(n^22^{\alpha (n)}\log n)\) that can answer each query in \(O(\log ^2 n)\) time, and another data structure of size \(O(n^3\log n)\) with \(O(\log n)\) query time. We present a data structure of size O(n) with query time \(O\big (h\log \frac{n}{h}\big )\), which also favors small values of h and is optimal when \(h=O(1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Notes

  1. In fact, since each bisector edge of \(\mathrm{SPM}(s)\) is a convex curve, C is naturally a splinegon [24].

References

  1. Arkin, E., Efrat, A., Knauer, C., Mitchell, J.S.B., Polishchuk, V., Rote, G., Schlipf, L., Talvitie, T.: Shortest path to a segment and quickest visibility queries. J. Comput. Geom. 7(2), 77–100 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Comput. Geom. Appl. 4(4), 475–481 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bender, M., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A. (eds.) Proceedings of the 4th Latin American Symposium on Theoretical Informatics. Lecture Notes in Computer Science, vol. 1776, pp. 88–94. Springer, Berlin (2000)

  4. Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons. Comput. Geom. 23(3), 313–335 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12(1), 54–68 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, D.Z., Wang, H.: A nearly optimal algorithm for finding \(L_1\) shortest paths among polygonal obstacles in the plane. In: Proceedings of the 19th European Symposium on Algorithms (ESA). Lecture Notes in Computer Science, vol. 6942, pp. 481–492. Springer, Heidelberg (2011)

  7. Chen, D.Z., Wang, H.: \(L_1\) shortest path queries among polygonal obstacles in the plane. In: Portier, N., Wilke, T. (eds.) Proceedings of 30th Symposium on Theoretical Aspects of Computer Science (STACS). pp. 293–304. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2013)

  8. Chen, D.Z., Wang, H.: Weak visibility queries of line segments in simple polygons. Comput. Geom. 48(6), 443–452 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, D.Z., Wang, H.: Visibility and ray shooting queries in polygonal domains. Comput. Geom. 48(2), 31–41 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, D.Z., Wang, H.: Computing the visibility polygon of an island in a polygonal domain. Algorithmica 77(1), 40–64 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheung, Y.K., Daescu, O.: Approximate point-to-face shortest paths in \({\cal{R}}^3\) (2010). arXiv:1004.1588

  12. Chiang, Y.-J., Tamassia, R.: Optimal shortest path and minimum-link path queries between two convex polygons inside a simple polygonal obstacle. Int. J. Comput. Geom. Appl. 7(1–2), 85–121 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry—Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  14. Edelsbrunner, H., Guibas, L., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J. Comput. 15(2), 317–340 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eriksson-Bique, S., Hershberger, J., Polishchuk, V., Speckmann, B., Suri, S., Talvitie, T., Verbeek, K., Yıldız, H.: Geometric \(k\) shortest paths. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1616–1625. SIAM, Philadelphia (2015)

  16. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2(1–4), 209–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: shoot a ray, take a walk. J. Algorithms 18(3), 403–431 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput. 28(6), 2215–2256 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hershberger, J., Polishchuk, V., Speckmann, B., Talvitie, T.: Geometric \(k\)th shortest paths: the applet. In: Video/Multimedia of the 30th Annual Symposium on Computational Geometry (2014). http://www.computational-geometry.org/SoCG-videos/socg14video/ksp/index.html

  21. Kapoor, S., Maheshwari, S., Mitchell, J.S.B.: An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane. Discrete Comput. Geom. 18(4), 377–383 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Khosravi, R., Ghodsi, M.: The fastest way to view a query point in simple polygons. In: Proceedings of the 24th European Workshop on Computational Geometry, pp. 187–190 (2005)

  23. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  24. Melissaratos, E., Souvaine, D.L.: Shortest paths help solve geometric optimization problems in planar regions. SIAM J. Comput. 21(4), 601–638 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mitchell, J.S.B.: A new algorithm for shortest paths among obstacles in the plane. Ann. Math. Artif. Intell. 3(1), 83–105 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Int. J. Comput. Geom. Appl. 6(3), 309–332 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pocchiola, M., Vegter, G.: Topologically sweeping visibility complexes via pseudotriangulations. Discrete Comput. Geom. 16(4), 419–453 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pocchiola, M., Vegter, G.: The visibility complex. Int. J. Comput. Geom. Appl. 6(3), 279–308 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Wang.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared in the Proceedings of the 33rd International Symposium on Computational Geometry (SoCG 2017). This research was supported in part by NSF under Grant CCF-1317143.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H. Quickest Visibility Queries in Polygonal Domains. Discrete Comput Geom 62, 374–432 (2019). https://doi.org/10.1007/s00454-019-00108-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00108-8

Navigation