Skip to main content
Log in

Conflict-Free Coloring of Intersection Graphs of Geometric Objects

  • Ricky Pollack memorial issue
  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

In 2002, Even et al. introduced and studied the notion of conflict-free colorings of geometrically defined hypergraphs. They motivated it by frequency assignment problems in cellular networks. This notion has been extensively studied since then. A conflict-free coloring of a graph is a coloring of its vertices such that the neighborhood (pointed or closed) of each vertex contains a vertex whose color differs from the colors of all other vertices in that neighborhood. In this paper we study conflict-free colorings of intersection graphs of geometric objects. We show that any intersection graph of n pseudo-discs in the plane admits a conflict-free coloring with \(O(\log n)\) colors, with respect to both closed and pointed neighborhoods. We also show that the latter bound is asymptotically sharp. Using our methods, we obtain the following strengthening of the two main results of Even et al.: Any family \(\mathcal {F}\) of n discs in the plane can be colored with \(O(\log n)\) colors in such a way that for any disc B in the plane, not necessarily from \(\mathcal {F}\), the set of discs in \(\mathcal {F}\) that intersect B contains a uniquely-colored element. In view of the original motivation to study such colorings, this strengthening suggests further applications to frequency assignment in wireless networks. Finally, we present bounds on the number of colors needed for conflict-free colorings of other classes of intersection graphs, including intersection graphs of axis-parallel rectangles and of \(\rho \)-fat objects in the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In fact, in [1] it is allowed to leave vertices uncolored; in our model, an additional color may be required for all uncolored vertices, and thus, in our notation the bound is \(\chi _\mathrm{CF}^\mathrm{cn}(G) \le r+1\).

References

  1. Abel, Z., Alvarez, V., Demaine, E., Fekete, S.P., Gour, A., Hesterberg, A., Keldenich, P., Scheffer, C.: Three colors suffice: conflict-free coloring of planar graphs. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pp. 1951–1963. SIAM, Philadelphia (2017)

  2. Agarwal, P.K., Pach, J., Sharir, M.: State of the union (of geometric objects). In: Goodman, J.E., et al. (eds.) Surveys on Discrete and Computational Geometry. Contemporary Mathematics, vol. 452, pp. 9–48. American Mathematical Society, Providence, RI (2008)

    Chapter  Google Scholar 

  3. Appel, K., Haken, W.: Every planar map is four colorable. I. Discharging. Ill. J. Math. 21(3), 429–490 (1977)

    Article  MathSciNet  Google Scholar 

  4. Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. II. Reducibility. Ill. J. Math. 21(3), 491–567 (1977)

    Article  MathSciNet  Google Scholar 

  5. Buzaglo, S., Pinchasi, R., Rote, G.: Topological hypergraphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 71–81. Springer, New York (2013)

    Chapter  Google Scholar 

  6. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent set of pseudo-disks. Discrete Comput. Geom. 48(2), 373–392 (2012)

    Article  MathSciNet  Google Scholar 

  7. Cheilaris, P.: Conflict-free coloring. PhD thesis, City University of New York (2009)

  8. Cheilaris, P., Smorodinsky, S., Sulovský, M.: The potential to improve the choice: list conflict-free coloring for geometric hypergraphs. In: Proceedings of the 27th Annual Symposium on Computational Geometry (SoCG’11), pp. 424–432. ACM, New York (2011)

  9. Chen, K., Fiat, A., Kaplan, H., Levy, M., Matoušek, J., Mossel, E., Pach, J., Sharir, M., Smorodinsky, S., Wagner, U., Welzl, E.: Online conflict-free coloring for intervals. SIAM J. Comput. 36(5), 1342–1359 (2006)

    Article  MathSciNet  Google Scholar 

  10. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM J. Comput. 33(1), 94–136 (2003)

    Article  MathSciNet  Google Scholar 

  11. Fekete, S.P., Keldenich, P.: Conflict-free coloring of intersection graphs. Int. J. Comput. Geom. Appl. 28(3), 289–307 (2018)

    Article  MathSciNet  Google Scholar 

  12. Fox, J., Pach, J., Suk, A.: Erdős–Hajnal conjecture for graphs with bounded VC-dimension. In: Aronov, B., Katz, M.J. (eds.) Proceedings of the 33rd Annual ACM Symposium on Computational Geomeometry (SoCG’17). LIPIcs. Leibniz International Proceedings in Informatics, vol. 77, pp. 43:1–43:15 Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2017)

  13. Gargano, L., Rescigno, A.A.: Complexity of conflict-free colorings of graphs. Theor. Comput. Sci. 566, 39–49 (2015)

    Article  MathSciNet  Google Scholar 

  14. Glebov, R., Szabó, T., Tardos, G.: Conflict-free colouring of graphs. Comb. Probab. Comput. 23(3), 434–448 (2014)

    Article  MathSciNet  Google Scholar 

  15. Hanani, C.C.A.: Über wesentlich unplättbare Kurven im dreidimensionalen Raume. Fund. Math. 23, 135–142 (1934)

    Article  Google Scholar 

  16. Kedem, K., Livné, R., Pach, J., Sharir, M.: On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom. 1(1), 59–71 (1986)

    Article  MathSciNet  Google Scholar 

  17. Keszegh, B.: Coloring intersection hypergraphs of pseudo-disks. In: Speckmann, B., Tóth, C.D. (eds.) Proceedings of the 34th International Symposium on Computational Geometry (SoCG’18). LIPIcs. Leibniz International Proceedings in Informatics, vol. 99, pp. 52:1–52:15. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2018)

  18. Keszegh, B., Pálvölgyi, D.: More on decomposing coverings by octants. J. Comput. Geom. 6(1), 300–315 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Matoušek, J.: Lectures on Discrete Geometry. Springer, New York (2002)

    Book  Google Scholar 

  20. Pach, J., Tardos, G.: Conflict-free colourings of graphs and hypergraphs. Comb. Probab. Comput. 18(5), 819–834 (2009)

    Article  MathSciNet  Google Scholar 

  21. Pach, J., Tóth, G.: Conflict free colorings. In: Aronov, B., et al. (eds.) Discrete and Computational Geometry: The Goodman–Pollack Festschrift. Algorithms and Combinatorics, vol. 25, pp. 665–671. Springer, Berlin (2003)

    Chapter  Google Scholar 

  22. Pinchasi, R.: A finite family of pseudodiscs must include a “small” pseudodisc. SIAM J. Discrete Math. 28(4), 1930–1934 (2014)

    Article  MathSciNet  Google Scholar 

  23. Raman, R., Ray, S.: Planar support for non-piercing regions and applications. In: Azar, Y., Bast, H., Herman, G. (eds.) Proceedings of the 26th Annual European Symposium on Algorithms (ESA’18). LIPIcs. Leibniz International Proceedings in Informatics, vol. 112, pp. 69:1–69:14. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2018)

  24. Smorodinsky, S.: On the chromatic number of geometric hypergraphs. SIAM J. Discrete Math. 21(3), 676–687 (2007)

    Article  MathSciNet  Google Scholar 

  25. Smorodinsky, S.: Conflict-free coloring and its applications. In: Bárány, K., et al. (eds.) Geometry-Intuitive, Discrete, and Convex. Bolyai Society Mathematical Studies, vol. 24, pp. 331–389. Springer, Berlin (2013)

    Google Scholar 

  26. Tutte, W.T.: Toward a theory of crossing numbers. J. Comb. Theory 8, 45–53 (1970)

    Article  MathSciNet  Google Scholar 

  27. Whitesides, S., Zhao, R.: K-Admissible Collections of Jordan Curves and Offsets of Circular Arc Figures. Technical Report SOCS 90.08. McGill University, Montreal (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaya Keller.

Additional information

Editor in Charge: János Pach

Dedicated to the memory of Ricky Pollack.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. Keller: Research partially supported by Grant 635/16 from the Israel Science Foundation, the Shulamit Aloni Post-Doctoral Fellowship of the Israeli Ministry of Science and Technology, and by the Kreitman Foundation Post-Doctoral Fellowship. S. Smorodinsky: Research partially supported by Grant 635/16 from the Israel Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, C., Smorodinsky, S. Conflict-Free Coloring of Intersection Graphs of Geometric Objects. Discrete Comput Geom 64, 916–941 (2020). https://doi.org/10.1007/s00454-019-00097-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-019-00097-8

Keywords

Mathematics Subject Classification

Navigation