Skip to main content
Log in

Equiangular Subspaces in Euclidean Spaces

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

A set of lines through the origin is called equiangular if every pair of lines defines the same angle, and the maximum size of an equiangular set of lines in \(\mathbb {R}^n\) was studied extensively for the last 70 years. In this paper, we study analogous questions for k-dimensional subspaces. We discuss natural ways of defining the angle between k-dimensional subspaces and correspondingly study the maximum size of an equiangular set of k-dimensional subspaces in \(\mathbb {R}^n\). Our bounds extend and improve a result of Blokhuis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asimov, D.: The grand tour—a tool for viewing multidimensional data. SIAM J. Sci. Stat. Comput. 6(1), 128–143 (1985)

    Article  MathSciNet  Google Scholar 

  2. Balla, I., Dräxler, F., Keevash, P., Sudakov, B.: Equiangular lines and spherical codes in Euclidean space. Invent. Math. 211(1), 179–212 (2018)

    Article  MathSciNet  Google Scholar 

  3. Barg, A., Yu, W.-H.: New bounds for equiangular lines. In: Barg, A., Musin, O.R. (eds.) Discrete Geometry and Algebraic Combinatorics. Contemporary Mathematics, vol. 625, pp. 111–121. American Mathematical Society, Providence (2014)

    Google Scholar 

  4. Blokhuis, A.: Polynomials in finite geometries and combinatorics. In: Walker, K. (ed.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 187, pp. 35–52. Cambridge University Press, New York (1993)

  5. de Caen, D.: Large equiangular sets of lines in Euclidean space. Electron. J. Combin. 7, Art. No. 55 (2000)

  6. Calderbank, A.R., Hardin, R.H., Rains, E.M., Shor, P.W., Sloane, N.J.A.: A group-theoretic framework for the construction of packings in Grassmannian spaces. J. Algebr. Comb. 9(2), 129–140 (1999)

    Article  MathSciNet  Google Scholar 

  7. Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5(2), 139–159 (1996)

    Article  MathSciNet  Google Scholar 

  8. Delsarte, P., Goethals, J.M., Seidel, J.J.: Bounds for systems of lines, and Jacobi polynomials. Philips Res. Rep. 30, 91–105 (1975)

    MATH  Google Scholar 

  9. Deutsch, F.: The angle between subspaces of a Hilbert space. In: Singh, S.P. (ed.) Approximation Theory, Wavelets and Applications. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 454, pp. 107–130. Kluwer, Dordrecht (1995)

  10. Dhillon, I.S., Heath Jr., R.W., Strohmer, T., Tropp, J.A.: Constructing packings in Grassmannian manifolds via alternating projection. Exp. Math. 17(1), 9–35 (2008)

    Article  MathSciNet  Google Scholar 

  11. Dixmier, J.: Étude sur les variétés et les opérateurs de Julia, avec quelques applications. Bull. Soc. Math. Fr. 77, 11–101 (1949)

    Article  Google Scholar 

  12. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MathSciNet  Google Scholar 

  13. Friedrichs, K.: On certain inequalities and characteristic value problems for analytic functions and for functions of two variables. Trans. Am. Math. Soc. 41(3), 321–364 (1937)

    Article  MathSciNet  Google Scholar 

  14. Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics. Springer, New York (2001)

    Book  Google Scholar 

  15. Krein, M.G., Krasnoselskii, M.A., Milman, D.P.: On the defect numbers of linear operators in Banach spaces and on some geometric questions. Trudy Inst. Mat. Akad. Nauk Ukrain. SSR 11, 97–112 (1948) (in Russian)

  16. Lemmens, P.W.H., Seidel, J.J.: Equiangular lines. J. Algebra 24, 494–512 (1973)

    Article  MathSciNet  Google Scholar 

  17. Lemmens, P.W.H., Seidel, J.J.: Equi-isoclinic subspaces of Euclidean spaces. Indag. Math. 35, 98–107 (1973)

    Article  MathSciNet  Google Scholar 

  18. van Lint, J.H., Seidel, J.J.: Equilateral point sets in elliptic geometry. Indag. Math. 28, 335–348 (1966)

    Article  MathSciNet  Google Scholar 

  19. Wong, Y.: Differential geometry of Grassmann manifolds. Proc. Natl. Acad. Sci. USA 57(3), 589–594 (1967)

    Article  MathSciNet  Google Scholar 

  20. Yokonuma, T.: Tensor Spaces and Exterior Algebra. Translations of Mathematical Monographs. American Mathematical Society, Providence (1992)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benny Sudakov.

Additional information

Editor in Charge: János Pach

Research supported in part by SNSF Grant 200021-175573.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balla, I., Sudakov, B. Equiangular Subspaces in Euclidean Spaces. Discrete Comput Geom 61, 81–90 (2019). https://doi.org/10.1007/s00454-018-9972-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-9972-5

Keywords

Mathematics Subject Classification

Navigation