Skip to main content
Log in

Euclidean Greedy Drawings of Trees

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Greedy embedding (or drawing) is a simple and efficient strategy to route messages in wireless sensor networks. For each source-destination pair of nodes st in a greedy embedding there is always a neighbor u of s that is closer to t according to some distance metric. The existence of greedy embeddings in the Euclidean plane \({\mathbb {R}}^2\) is known for certain graph classes such as 3-connected planar graphs. We completely characterize the trees that admit a greedy embedding in \({\mathbb {R}}^2\). This answers a question by Angelini et al. (Networks 59(3):267–274, 2012) and is a further step in characterizing the graphs that admit Euclidean greedy embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a survey. IEEE Wireless Commun. 11(6), 6–28 (2004)

    Article  Google Scholar 

  2. Alamdari, S., Chan, T.M., Grant, E., Lubiw, A., Pathak, V.: Self-approaching graphs. In: Didimo, W., Patrignani, M. (eds.) Graph Drawing, vol. 7704. Lecture Notes in Computer Science, pp. 260–271. Springer, Heidelberg (2013)

  3. Angelini, P., Di Battista, G., Frati, F.: Succinct greedy drawings do not always exist. Networks 59(3), 267–274 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawings of triangulations. J. Graph Algorithms Appl. 14(1), 19–51 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Comer, D.E.: Internetworking with TCP/IP, Vol. 1: Principles, Protocols, and Architecture. 4th edn. Prentice Hall PTR, Upper Saddle River (2000)

  6. Da Lozzo, G., D’Angelo, A., Frati, F.: On planar greedy drawings of 3-connected planar graphs. In: Aronov, B., Katz, M.J. (eds.) 33rd International Symposium on Computational Geometry (SoCG 2017), vol. 77. Leibniz International Proceedings in Informatics (LIPIcs), pp. 33:1–33:16. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany (2017)

  7. Dehkordi, H.R., Frati, F., Gudmundsson, J.: Increasing-chord graphs on point sets. J. Graph Algorithms Appl. 19(2), 761–778 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dhandapani, R.: Greedy drawings of triangulations. Discrete Comput. Geom. 43(2), 375–392 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discret. Math. 9(3), 349–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eppstein, D., Goodrich, M.T.: Succinct greedy geometric routing using hyperbolic geometry. IEEE Trans. Comput. 60(11), 1571–1580 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao, J., Guibas, L.J.: Geometric algorithms for sensor networks. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 370(1958), 27–51 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goodrich, M.T., Strash, D.: Succinct greedy geometric routing in the Euclidean plane. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) Algorithms and Computation, vol. 5878. Lecture Notes in Computer Science, pp. 781–791. Springer, Berlin (2009)

  13. Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Camb. Philos. Soc. 125(3), 441–453 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley, Hoboken (2005)

    Book  Google Scholar 

  15. Kleinberg, R.: Geographic routing using hyperbolic space. In: Proceedings of the 26th IEEE International Conference on Computer Communications (INFOCOM’07), pp. 1902–1909. IEEE, Piscataway (2007)

  16. Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. Discrete Comput. Geom. 44(3), 686–705 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mastakas, K., Symvonis, A.: On the construction of increasing-chord graphs on convex point sets. In: Proceedings of the 6th International Conference on Information, Intelligence, Systems and Applications (IISA’15), pp. 1–6. IEEE, Piscataway (2015)

  18. Nöllenburg, M., Prutkin, R.: Euclidean greedy drawings of trees. In: Bodlaender, H.L., Italiano, G.F. (eds.) Algorithms-ESA 2013, vol. 8125. Lecture Notes in Computer Science, pp. 767–778. Springer, Heidelberg (2013)

  19. Nöllenburg, M., Prutkin, R., Rutter, I.: On self-approaching and increasing-chord drawings of 3-connected planar graphs. J. Comput. Geom. 7(1), 47–69 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci. 344(1), 3–14 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information. In: Proceedings of the 9th Annual International Conference on Mobile Computing and Networking (MobiCom’03), pp. 96–108. ACM, New York (2003)

  22. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’90), pp. 138–148. SIAM, Philadelphia (1990)

  23. Stojmenovic, I., Lin, X.: Loop-free hybrid single-path/flooding routing algorithms with guaranteed delivery for wireless networks. IEEE Trans. Parallel Distrib. Syst. 12(10), 1023–1032 (2001)

    Article  Google Scholar 

  24. Wang, J.-J., He, X.: Succinct strictly convex greedy drawing of 3-connected plane graphs. Theor. Comput. Sci. 532, 80–90 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zheng, J., Jamalipour, A.: Wireless Sensor Networks: A Networking Perspective. Wiley-IEEE Press, Hoboken (2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

M.N. received financial support by the “Concept for the Future” of KIT within the framework of the “German Excellence Initiative”. R.P. was supported by the German Research Foundation (DFG) within the Research Training Group GRK 1194 “Self-Organizing Sensor-Actuator Networks”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Prutkin.

Additional information

Editor in Charge János Pach

A preliminary version of this paper appeared in the European Symposium on Algorithms (ESA’13) [18].

Appendix

Appendix

Lemma 4.11 Consider angles \(0^\circ \le \varphi _4 \le 60^\circ \), \(90^\circ < \varphi _3 \le \varphi _2 \le \varphi _1 \le 120^\circ \), \(\varphi _1 + \cdots + \varphi _4 > 360^\circ \). Let the following two conditions hold:

  1. (i)

    \(14 \varphi _1 + 12 \varphi _2 + 8 \varphi _3 + 15 \varphi _4 > 4500^\circ \).

  2. (ii)

    For \(x := \min \Bigg \{ \frac{1}{7} \,(14 \varphi _1 + 12 \varphi _2 + 8 \varphi _3 + 15 \varphi _4 - 4500^\circ ), \varphi _4 \Bigg \}\) and \(p_1 \in [0^\circ , 90^\circ ]^{10}\), \(p_1 = (\beta _0, \ldots , \beta _4, \gamma _0, \ldots , \gamma _4)\) defined as:

    $$\begin{aligned} \beta _0&= \varphi _4-x, \\ \beta _1&= 90^\circ - \frac{x}{2},\\ \beta _2&= \varphi _3 + \frac{\varphi _2}{2} + \frac{\varphi _1}{4} + \frac{\varphi _4-x}{8} - 157.5^\circ , \\ \beta _3&= \varphi _2 + \frac{\varphi _1}{2} + \frac{\varphi _4-x}{4} - 135^\circ , \\ \beta _4&= \varphi _1 - 90^\circ + \frac{\varphi _4-x}{2}, \\ \gamma _0&= 90^\circ - \frac{\varphi _4 - x}{2}, \\ \gamma _1&= x, \\ \gamma _2&= 168.75^\circ - \frac{\varphi _3}{2}- \frac{\varphi _2}{4} - \frac{\varphi _1}{8} - \frac{\varphi _4 - x}{16}, \\ \gamma _3&= 157.5^\circ - \frac{\varphi _2}{2} - \frac{\varphi _1}{4} - \frac{\varphi _4-x}{8}, \\ \gamma _4&= 135^\circ - \frac{\varphi _1}{2} - \frac{\varphi _4-x}{4}, \end{aligned}$$

    it holds: \( \omega (p_1) < 0 \).

Then, \(\{ 180^\circ , \varphi _1, \ldots , \varphi _4\} \in \mathcal P^{5}\).

Fig. 22
figure 22

Proof of Lemma 4.11

Proof

Assume both conditions hold. See the construction in Fig. 22. The angles in \(p_1\) are chosen such that all five triangles are equilateral: we have \(\beta _1 = \alpha _1\) and \(\gamma _i = \alpha _i\) for \(i = 0,2,3,4\). Furthermore, \(\beta _0, \gamma _1, \beta _2, \beta _3, \beta _4 \le 60^\circ \). Consider the permutation \(\tau = (4, 0, 3, 2, 1)\). We verify the conditions in Observation 4.3:

$$\begin{aligned} \beta _4 + \gamma _0&= \varphi _1, \\ \beta _3 + \gamma _4&= \varphi _2, \\ \beta _2 + \gamma _3&= \varphi _3, \\ \beta _1 + \gamma _2&= 258.75^\circ - \frac{1}{8}\, \varphi _1 - \frac{1}{4}\, \varphi _2 - \frac{1}{2}\, \varphi _3 - \frac{1}{16} \,\varphi _4 -\frac{7}{16} \,x \le 180^\circ , \\ \beta _0 + \gamma _1&= \varphi _4, \\ 2 \beta _0 + \gamma _0&= \frac{3}{2}\, \varphi _4 - \frac{3}{2} x + 90^\circ \le 180^\circ , \\ 2 \beta _1 + \gamma _1&= 180^\circ , \\ 2 \beta _2 + \gamma _2&= \frac{3}{8} \,\varphi _1 + \frac{3}{4} \,\varphi _2 + \frac{3}{2}\, \varphi _3 + \frac{3}{16}\, \varphi _4 - \frac{3}{16} \,x - 146.25^\circ \le 180^\circ , \\ 2 \beta _3 + \gamma _3&= \frac{3}{4} \,\varphi _1 + \frac{3}{2} \,\varphi _2 + \frac{3}{8} \,\varphi _4 - \frac{3}{8}\, x - 112.5^\circ \le 180^\circ ,\\ 2 \beta _4 + \gamma _4&= \frac{3}{2} \,\varphi _1 + \frac{3}{4} \,\varphi _4 - \frac{3}{4}\, x - 45^\circ \le 180^\circ , \\ \beta _0 + 2 \gamma _0&= 180^\circ , \\ \beta _1 + 2 \gamma _1&= 90^\circ + \frac{3}{2} \,x \le 180^\circ , \\ \beta _2 + 2 \gamma _2&= 180^\circ ,\\ \beta _3 + 2 \gamma _3&= 180^\circ ,\\ \beta _4 + 2 \gamma _4&= 180^\circ . \end{aligned}$$

We see that \(p_1\) lies in the polytope \(P_\tau =: P\), in particular, \(p_1 \in \partial P\).

We now define another point \(p_2 \in [0^\circ , 90^\circ ]^{10}\). Due to condition (i), there must exist \(90^\circ< \psi _i < \varphi _i\) for \(i=1,\ldots ,3\), \(0^\circ< \psi _4 < \varphi _4\), \(0^\circ< \varepsilon < \psi _4\) (for proper \(\psi _i\), \(\varepsilon \) can be chosen arbitrarily small), such that:

$$\begin{aligned} 14\psi _1 + 12\psi _2 + 8\psi _3 + 15\psi _4 - 80\varepsilon = 4500^\circ . \end{aligned}$$

Consider the point \(p_2 = (\overline{\beta _0},\ldots ,\overline{\beta _4},\overline{\gamma _0},\ldots ,\overline{\gamma _4})\), such that:

$$\begin{aligned} \overline{\beta }_0&= \psi _4, \\ \overline{\beta }_1&= 90^\circ - \varepsilon ,\\ \overline{\beta }_2&= \psi _3 + \frac{\psi _2}{2} + \frac{\psi _1}{4} + \frac{\psi _4}{8} - 157.5^\circ , \\ \overline{\beta }_3&= \psi _2 + \frac{\psi _1}{2} + \frac{\psi _4}{4} - 135^\circ , \\ \overline{\beta }_4&= \psi _1 - 90^\circ + \frac{\psi _4}{2}, \\ \overline{\gamma }_0&= 90^\circ - \frac{\psi _4}{2} - \varepsilon , \\ \overline{\gamma }_1&= 0^\circ , \\ \overline{\gamma }_2&= 168.75^\circ - \frac{\psi _3}{2}- \frac{\psi _2}{4} - \frac{\psi _1}{8} - \frac{\psi _4}{16} - \varepsilon , \\ \overline{\gamma }_3&= 157.5^\circ - \frac{\psi _2}{2} - \frac{\psi _1}{4} - \frac{\psi _4}{8} - \varepsilon , \\ \overline{\gamma }_4&= 135^\circ - \frac{\psi _1}{2} - \frac{\psi _4}{4} - \varepsilon . \end{aligned}$$

The condition \(\sum _{i=0}^4 (\overline{\beta }_i + \overline{\gamma }_i) = 540^\circ \) holds, since

$$\begin{aligned} 16 \sum _{i=0}^4 (\overline{\beta }_i + \overline{\gamma }_i)&= 16 \cdot (90^\circ + 168.75^\circ ) + (14\psi _1 + 12\psi _2 + 8\psi _3 + 15\psi _4 - 16 \cdot 5\varepsilon )\\&= 16\cdot 540^\circ , \end{aligned}$$

due to the choice of \(\psi _i\) and \(\varepsilon \). The rest of the conditions for \(p_2 \in P\) can be easily verified:

$$\begin{aligned} \overline{\beta _4} + \overline{\gamma _0}= & {} \psi _1 - \varepsilon< \varphi _1, \\ \overline{\beta _3} + \overline{\gamma _4}= & {} \psi _2 - \varepsilon< \varphi _2, \\ \overline{\beta _2} + \overline{\gamma _3}= & {} \psi _3 - \varepsilon< \varphi _3, \\ \overline{\beta _1} + \overline{\gamma _2}= & {} 258.75^\circ - \frac{1}{8}\, \psi _1 - \frac{1}{4}\, \psi _2 - \frac{1}{2}\, \psi _3 - \frac{1}{16} \,\psi _4 - 2 \varepsilon< 180^\circ ,\\ \overline{\beta _0} + \overline{\gamma _1}= & {} \psi _4< \varphi _4, \\ 2 \overline{\beta _0} + \overline{\gamma _0}= & {} \frac{3}{2} \,\psi _4 + 90^\circ - \varepsilon< 180^\circ , \\ 2 \overline{\beta _1} + \overline{\gamma _1}= & {} 180^\circ - 2 \varepsilon< 180^\circ , \\ 2 \overline{\beta _2} + \overline{\gamma _2}= & {} \frac{3}{8}\, \psi _1 + \frac{3}{4}\, \psi _2 + \frac{3}{2}\, \psi _3 + \frac{3}{16} \,\psi _4 - \varepsilon - 146.25^\circ< 180^\circ , \\ 2 \overline{\beta _3} + \overline{\gamma _3}= & {} \frac{3}{4}\, \psi _1 + \frac{3}{2}\, \psi _2 + \frac{3}{8}\, \psi _4 - \varepsilon - 112.5^\circ< 180^\circ ,\\ 2 \overline{\beta _4} + \overline{\gamma _4}= & {} \frac{3}{2} \,\psi _1 + \frac{3}{4} \,\psi _4 - \varepsilon - 45^\circ< 180^\circ , \\ \overline{\beta _0} + 2 \overline{\gamma _0}= & {} 180^\circ - 2 \varepsilon< 180^\circ , \\ \overline{\beta _1} + 2 \overline{\gamma _1}= & {} 90^\circ - \varepsilon< 180^\circ , \\ \overline{\beta _2} + 2 \overline{\gamma _2}= & {} 180^\circ - 2 \varepsilon< 180^\circ , \\ \overline{\beta _3} + 2 \overline{\gamma _3}= & {} 180^\circ - 2 \varepsilon< 180^\circ , \\ \overline{\beta _4} + 2 \overline{\gamma _4}= & {} 180^\circ - 2 \varepsilon < 180^\circ . \\ \end{aligned}$$

Apart from \(\overline{\gamma }_1 \ge 0^\circ \), all inequalities are strict. Since \(\gamma _1 > 0^\circ \), for each \(\lambda \in (0,1)\), the point \(\lambda p_1 + (1-\lambda ) p_2\) lies in the interior of P. Since \(\omega (p_1) < 0\) and \(\omega (p_2) > 0\) (due to \(\overline{\gamma }_1 = 0^\circ \)), by the mean value theorem, \(\omega (\lambda p_1 + (1-\lambda ) p_2) = 0\) for some \(\lambda \in (0,1)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nöllenburg, M., Prutkin, R. Euclidean Greedy Drawings of Trees. Discrete Comput Geom 58, 543–579 (2017). https://doi.org/10.1007/s00454-017-9913-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9913-8

Keywords

Mathematics Subject Classification

Navigation