Skip to main content
Log in

Expected Length of the Voronoi Path in a High Dimensional Poisson–Delaunay Triangulation

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Let X be a d dimensional Poisson point process. We prove that the expected length of the Voronoi path between two points at distance 1 in the Delaunay triangulation associated with X is \(\sqrt{\frac{2d}{\pi }}+O(d^{-\frac{1}{2}})\) when \(d\rightarrow \infty \). In any dimension, we also provide a precise interval containing the actual value; in 3D the expected length is between 1.4977 and 1.50007.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Useful integrals on exponential or trigonometric functions are given in Appendix.

References

  1. Baccelli, F., Tchoumatchenko, K., Zuyev, S.: Markov paths on the Poisson–Delaunay graph with applications to routing in mobile networks. Adv. Appl. Probab. 32(1), 1–18 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bose, P., Devroye, L.: On the stabbing number of a random Delaunay triangulation. Comput. Geom. 36(2), 89–105 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Broutin, N., Devillers, O., Hemsley, R.: Efficiently navigating a random Delaunay triangulation. Random Struct. Algorithms 46(1), 95–136 (2016). https://hal.inria.fr/hal-00940743

  4. Chenavier, N., Devillers, O.: Stretch factor of long paths in a planar Poisson–Delaunay triangulation. HAL-Inria, Research Report RR-8935 (2016). https://hal.inria.fr/hal-01346203

  5. de Castro, P.M.M., Devillers, O.: Maple code for “Expected length of the Voronoi path in a high dimensional Poisson–Delaunay triangulation”. HAL-Inria, Research Report RR-8947 (2016). Available clicking on a button “see related files”. https://hal.inria.fr/hal-01353735

  6. Devillers, O., Hemsley, R.: The worst visibility walk in random Delaunay triangulation is \(O(\sqrt{n})\). J. Comput. Geom. 7(1), 332–359 (2016). https://hal.inria.fr/hal-01348831

  7. Devillers, O., Noizet, L.: Walking in a planar Poisson–Delaunay triangulation: shortcuts in the Voronoi path. HAL-Inria, Research Report RR-8946 (2016). https://hal.inria.fr/hal-01353585

  8. Devillers, O., Pion, S., Teillaud, M.: Walking in a triangulation. Int. J. Found. Comput. Sci. 13(2), 181–199 (2002). https://hal.inria.fr/inria-00102194

  9. Devroye, L., Lemaire, C., Moreau, J.-M.: Expected time analysis for Delaunay point location. Comput. Geom. 29(2), 61–89 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications (New York). Springer, Berlin (2008)

    Book  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Sylvain Lazard for his help and comments in preparing the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Devillers.

Additional information

Editor in Charge: Kenneth Clarkson

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 333 KB)

Supplementary material 2 (mw 202 KB)

Appendices

Appendix: Useful Integrals

In the paper we used several integrals whose expressions are given here. For completeness, the proofs are given in this appendix, although they are essentially boring technical computations. For d small enough, Maple or WolframAlpha can compute most of such integrals. However, for symbolic d, such software may handle only a couple of them. Proofs are below.

$$\begin{aligned}&\int _0^\infty e^{-c r^d} r^{2 d -1} \mathrm{d} r = \frac{1}{d \cdot c^2}. \end{aligned}$$
(9)
$$\begin{aligned}&\int _0^{\pi } \sin ^d \alpha \, \mathrm{d} \alpha = \frac{\Gamma ((d+1)/2)}{\Gamma (1+d/2)} \cdot \sqrt{\pi }. \end{aligned}$$
(10)
$$\begin{aligned}&\int _0^\pi \int _0^\pi \sin ^d\alpha _1 \sin ^d\alpha _2 |\cos \alpha _1 -\cos \alpha _2| \mathrm{d}\alpha _1 \mathrm{d}\alpha _2 = \frac{2^{2 d+4} {d!}^2}{(2 d + 2)!}. \end{aligned}$$
(11)
$$\begin{aligned}&\int _0^{2\pi } \int _0^{2\pi } \cos {\left( \alpha _1 - \alpha _2\right) } \mathrm{d} \alpha _2 \mathrm{d} \alpha _1 = 0. \end{aligned}$$
(12)
$$\begin{aligned}&\int _0^{\pi } \sin ^d \alpha \cos \alpha \mathrm{d} \alpha = 0 . \end{aligned}$$
(13)
$$\begin{aligned}&\int _0^\pi \int _0^\pi \sin ^d\alpha _1 \sin ^d\alpha _2 |\cos \alpha _1 -\cos \alpha _2| \cos \alpha _1 \cos \alpha _2 \mathrm{d}\alpha _1 \mathrm{d}\alpha _2 = -\frac{2^{2 d+4} {d!}^2}{(2 d + 3)!}.\nonumber \\ \end{aligned}$$
(14)
$$\begin{aligned}&\int _0^{2\pi } \int _0^{2\pi } \cos ^2(\alpha _1-\alpha _2) \mathrm{d}\alpha _2 \mathrm{d}\alpha _1 = 2\pi ^2. \end{aligned}$$
(15)
$$\begin{aligned}&\int _0^\pi \sin ^d (\alpha ) \cos ^2 (\alpha ) \mathrm{d}\alpha = \biggl (\frac{1}{d+2}\biggr ) \frac{\Gamma ((d+1)/2)}{\Gamma (1+d/2)}\cdot \sqrt{\pi }. \end{aligned}$$
(16)
$$\begin{aligned}&{\int _0^\pi \int _0^\pi \sin ^d\alpha _1 \sin ^d\alpha _2 \cos ^2\alpha _1 \cos ^2\alpha _2 |\cos \alpha _1 -\cos \alpha _2| \mathrm{d}\alpha _1 \mathrm{d}\alpha _2} \nonumber \\&\quad = \frac{2^{2 d+6} (7 d + 13) {(d+2)!}^2}{(d+1)^2 (d+2) (2 d + 6)!}. \end{aligned}$$
(17)
$$\begin{aligned}&\int _{a}^{b} \sin ^d \alpha \, \mathrm{d} \alpha \nonumber \\&\quad = {\left\{ \begin{array}{ll} \displaystyle {-\sum _{\mathop {i \mathrm{\ odd}}\limits ^{1\le i\le d}} } \frac{1}{i} \left( \frac{\Gamma ((d + 1)/2) \Gamma (1+i/2)}{\Gamma (1+d/2) \Gamma ((1+i)/2)}\right) \sin ^{i-1} (\alpha ) \cos (\alpha ) \Big |^{b}_{a}, &{} \hbox {if } d\hbox { is odd},\\ \displaystyle {-\sum _{\mathop {i \mathrm{\ even}}\limits ^{2\le i\le d}}} \frac{1}{i} \left( \frac{\Gamma ((d+1)/2) \Gamma (1+i/2)}{\Gamma (1+d/2) \Gamma ((1+i)/2)}\right) \sin ^{i-1} (\alpha ) \cos (\alpha ) \Big |^{b}_{a} + \frac{\Gamma ((d+1)/2)}{\Gamma (1+d/2)} {\frac{\alpha }{\sqrt{\pi }}}\Big |^{b}_{a} , &{} \hbox {if } d\hbox { is even}. \end{array}\right. }\nonumber \\ \end{aligned}$$
(18)
$$\begin{aligned} \int _0^{\pi } \alpha \sin ^d \alpha \cos \alpha \, \mathrm{d} \alpha = -\biggl (\frac{1}{d+1}\biggr ) \frac{\Gamma (d/2+1)}{\Gamma (1+(d+1)/2)} \cdot \sqrt{\pi }. \end{aligned}$$
(19)

Proofs

Proof of Equation (9)

Classic. \(\square \)

Proof of Equation (18)

Integration by parts gives

$$\begin{aligned} \int _{a}^{b} \sin ^d \alpha \, \mathrm{d} \alpha = -\cos (\alpha )\sin ^{d-1}(\alpha )\Big |^{b}_{a} + \int _{a}^{b} \cos ^2{\alpha } (d-1) \sin ^{d-2} (\alpha ) \, \mathrm{d} \alpha . \end{aligned}$$

Using the identity \(\cos ^2(\alpha ) = 1 - \sin ^2(\alpha )\) and simplifying gives

$$\begin{aligned} \int _{a}^{b} \sin ^d \alpha \, \mathrm{d} \alpha = -\Big (\frac{1}{d}\Big ) \cos (\alpha )\sin ^{d-1}(\alpha )\Big |^{b}_{a} + \Big (\frac{d-1}{d}\Big ) \int _{a}^{b}\sin ^{d-2} (\alpha ) \, \mathrm{d} \alpha . \end{aligned}$$

Now, using \(\int _{a}^{b} \sin ^0 \alpha \, \mathrm{d} \alpha = \alpha |^{b}_{a}\) and the identity

$$\begin{aligned} \prod _{k=1}^{k} {\frac{2 i-1}{2 i}} = \frac{\Gamma ({1}/{2}+k)}{\Gamma (k+1) \sqrt{\pi }}, \end{aligned}$$

by induction on d, we get that, for d even,

$$\begin{aligned} \int _{a}^{b} \sin ^d \alpha \, \mathrm{d} \alpha= & {} \displaystyle {-\sum _{\mathop {i \mathrm{\ even}}\limits ^{2\le i\le d}}} \frac{1}{i} \left( \frac{{\Gamma ((d+1)/2}/\big ({\Gamma (1+d/2)}\sqrt{\pi }\big ) }{ {\Gamma ((i+1)/2)}/\big (\Gamma (1+i/2)\sqrt{\pi } \big ) }\right) \sin ^{i-1} (\alpha ) \cos (\alpha )\Big |^{b}_{a} \nonumber \\&+ \frac{\Gamma ((d+1)/2)}{\Gamma (1+d/2)} {\frac{\alpha }{\sqrt{\pi }}}\Big |^{b}_{a} . \end{aligned}$$

Analogously, for d odd, we use \(\int _{a}^{b} \sin ^1 \alpha \, \mathrm{d} \alpha = -\cos (\alpha )\big |^{b}_{a} \) and the identity

$$\begin{aligned} \prod _{k=1}^{k} {\frac{2 i}{2 i+1}} = \frac{\Gamma (d+1) \sqrt{\pi }}{\Gamma (d+{3}/{2})}, \end{aligned}$$

to get by induction

$$\begin{aligned} \int _{a}^{b} \sin ^d \alpha \, \mathrm{d} \alpha =-\sum _{\mathop {i \mathrm{\ odd}}\limits ^{1\le i\le d}} \frac{1}{i} \biggl (\frac{(\Gamma ((d+1)/2)\sqrt{\pi })/\Gamma (1+d/2)}{(\Gamma ((i+1)/2)\sqrt{\pi })/\Gamma (1+i/2)}\biggr ) \sin ^{i-1} (\alpha ) \cos (\alpha )\bigr |^{b}_{a}. \end{aligned}$$

Grouping the two expressions above completes the proof. \(\square \)

Proof of Equation (10)

It is a direct corollary of (18). \(\square \)

Proof of Equation (19)

Integration by parts combined with (10) gives

$$\begin{aligned} \int _0^{\pi } \alpha \sin ^d \alpha \cos \alpha \, \mathrm{d} \alpha= & {} \frac{1}{d+1} \alpha \sin ^{d+1}(\alpha ) \Big |^{\pi }_0 - \frac{1}{d+1} \int _0^{\pi } \sin ^{d+1} \alpha \, \mathrm{d} \alpha \\= & {} - \frac{1}{d+1} \int _0^{\pi } \sin ^{d+1} \alpha \, \mathrm{d} \alpha \\= & {} -\Big ( \frac{1}{d+1} \Big ) \frac{\Gamma (d/2+1)}{\Gamma (1+(d+1)/2)} \cdot \sqrt{\pi }. \end{aligned}$$

\(\square \)

Proof of Equation (11)

First, we use the symmetry with respect to the line \(\alpha _1=\alpha _2\) to split the integral in two equal parts without absolute values.

$$\begin{aligned} \mathrm{Integral}= & {} 2 \int \int _{\mathop {\alpha _1 < \alpha _2}\limits ^{\alpha _1,\alpha _2\in [0,\pi ]^2}} \;\;\sin ^d\alpha _1 \sin ^d\alpha _2 (\cos \alpha _1 -\cos \alpha _2) \mathrm{d}\alpha _1 \mathrm{d}\alpha _2\\= & {} 2 \biggl ( \int _0^{\pi } \sin ^d \alpha _1 \cos \alpha _1 \int _{\alpha _1}^\pi \sin ^d \alpha _2 \mathrm{d}\alpha _2 \mathrm{d}\alpha _1 - \int _0^{\pi } \sin ^d \alpha _2 \cos \alpha _2 \int _0^{\alpha _2} \sin ^d\alpha _1 \mathrm{d}\alpha _1 \mathrm{d}\alpha _2 \biggr ) \\= & {} 2 \int _0^{\pi } \sin ^d x \cos x \biggl (\int _{x}^\pi \sin ^d y \mathrm{d}y- \int _0^x \sin ^d y \mathrm{d}y\biggr )\mathrm{d}x. \\ \end{aligned}$$

Let \(f_d(x) = (\int _{x}^\pi \sin ^d y \mathrm{d}y - \int _0^x \sin ^d y \mathrm{d}y)\). Then, by (18), we get

$$\begin{aligned} f_d(x) = {\left\{ \begin{array}{ll} \displaystyle {2 \sum _{\mathop {i \mathrm{\ odd}}\limits ^{1\le i\le d}} } \frac{1}{i} \left( \frac{\Gamma ((d+1)/2)\Gamma (1+i/2)}{\Gamma (1+d/2)\Gamma ((1 + i)/2)}\right) \sin ^{i-1} x \cos x, &{} \hbox {if } d\hbox { is odd},\\ \displaystyle {2 \sum _{\mathop {i \mathrm{\ even}}\limits ^{2\le i\le d}}} \frac{1}{i} \left( \frac{\Gamma ((d+1)/2)\Gamma (1+i/2)}{\Gamma (1+d/2)\Gamma ((1 + i)/2)}\right) \sin ^{i-1} x \cos x + \frac{\Gamma ((d + 1)/2)}{\Gamma (1+d/2)} \sqrt{\pi } {\Big (1 - \frac{2 x}{\pi }\Big )}, &{} \hbox {if } d\hbox { is even}. \end{array}\right. } \end{aligned}$$

First, suppose d is odd. Then, replacing the equation above in the simplified integral gives

$$\begin{aligned} 2 \int ^{\pi }_0 \sin ^{d} x \cos x \biggl ( 2 \sum _{\mathop {i \mathrm{\ odd}}\limits ^{1\le i\le d}} \frac{\Gamma ((d+1)/2) \Gamma (1+i/2)}{\Gamma (1+d/2) \Gamma ((i+1)/2)} \frac{1}{i} \sin ^{i-1} x \cos x\biggr ) \mathrm{d} x, \end{aligned}$$

which simplifies into

$$\begin{aligned} 4 \sum _{\mathop {i \mathrm{\ odd}}\limits ^{1\le i\le d}} \frac{\Gamma ((d+1)/2)\Gamma (1+i/2)}{\Gamma (1+d/2)\Gamma ((i+1)/2)} \frac{1}{i} \int ^\pi _0 \sin ^{d+i-1} x \cos ^2 x \mathrm{d} x. \end{aligned}$$

Using (16) gives

$$\begin{aligned} 4 \sum _{\mathop {i \mathrm{\ odd}}\limits ^{1\le i\le d}} \frac{1}{i}\, \frac{\Gamma ((d+1)/2)\Gamma (1+i/2)}{\Gamma (1+d/2)\Gamma ((i+1)/2)} \biggl (\frac{1}{d+i+1}\biggr )\frac{\Gamma ((d+i)/2)}{\Gamma ((d+i+1)/2)} \,\sqrt{\pi }. \end{aligned}$$

Taking \(d = 2k-1\), \(i=2j-1\), replacing in the equation above and summing, gives

$$\begin{aligned} 4 \frac{(4k+ 1) \sqrt{\pi } \Gamma (k) \Gamma (2 k) }{\Gamma (2 k + {3}/{2}) \Gamma (1+k)}. \end{aligned}$$

Finally, replacing k by \((d+1)/2\) and simplifying gives

$$\begin{aligned} 2 \sqrt{\pi }\,\frac{\Gamma (d+1)}{(d+1)\Gamma (d+1+1/2)/2}. \end{aligned}$$

Now, suppose d is even. Then, again, replacing \(f_d\) in the simplified integral gives

$$\begin{aligned} 2 \int ^{\pi }_0 \sin ^{d} x \cos x&\Big ( \underbrace{2 \sum _{\mathop {i \mathrm{\ even}}\limits ^{2\le i\le d}} \frac{\Gamma ((d+1)/2)\Gamma (1+i/2)}{\Gamma (1+d/2)\Gamma ((i+1)/2) } \frac{1}{i} \sin ^{i-1} x \cos x}_{A} \\&+ \underbrace{\frac{\Gamma ((d+1)/2)}{\Gamma (1 + d/2)} \sqrt{\pi } {\Big (1 - \frac{2 x}{\pi }\Big )} }_{B}\Big ) \mathrm{d} x, \end{aligned}$$

We handle the A term first, which is pretty similar to the d odd case. Again, for the A term, expanding the sum and using (16) gives

$$\begin{aligned} 4 \sum _{\mathop {i \mathrm{\ even}}\limits ^{2\le i\le d}} \frac{1}{i}\, \frac{\Gamma ((d+1)/2)\Gamma (1+i/2)}{\Gamma (1+d/2)\Gamma ((i+1)/2)}\biggl (\frac{1}{d+i+1}\biggr ) \frac{\Gamma ((d+i)/2)}{\Gamma ((d+i+1)/2)}\, \sqrt{\pi }. \end{aligned}$$

Taking \(d = 2k\), \(i=2j\), replacing in the equation above and summing, gives

$$\begin{aligned} 4 \Big ( \frac{\sqrt{\pi } \Gamma (2 k + 1)}{(2 k + 1) \Gamma (2k + {3}/{2})} - \frac{2}{(2 k + 1)^2} \Big ). \end{aligned}$$

Finally, replacing k by d / 2 and simplifying gives

$$\begin{aligned} 2 \sqrt{\pi }\, \frac{\Gamma (d+1)}{(d+1)\Gamma (d+1+1/2)/2} - 2 \,\frac{1}{(d+1)^2/4}. \end{aligned}$$

Now, we handle the B term, which is

$$\begin{aligned} 2 \int ^\pi _0 \sin ^d x \cos x \Big (\frac{\Gamma ((d+1)/2)}{\Gamma (1+d/2)}\Big ) \sqrt{\pi } \Big (1 - \frac{2 x}{\pi } \Big ) \mathrm{d} x. \end{aligned}$$

Expanding it, gives

$$\begin{aligned} 2 \int ^\pi _0 \sin ^d x \cos x \Big (\frac{\Gamma ((d+1)/2)}{\Gamma (1+d/2)}\Big ) \sqrt{\pi } \mathrm{d} x - 2 \cdot \frac{2}{\pi } \cdot \int ^\pi _0 x \sin ^d x \cos x \Big (\frac{\Gamma ((d+1)/2)}{\Gamma (1+d/2)}\Big ) \sqrt{\pi } \mathrm{d} x. \end{aligned}$$

The left term is null because of (13). And plugging (19) in the right term above gives

$$\begin{aligned} 2 \cdot \frac{\Gamma ((d+1)/2)}{\Gamma (1+d/2)} \sqrt{\pi } \cdot \Big (\frac{1}{d+1}\Big ) \cdot \frac{\Gamma (1+d/2)}{\Gamma (1+(d+1)/2)} \cdot \sqrt{\pi } \cdot \frac{2}{\pi } = 2 \,\frac{1}{(d+1)^2/4}. \end{aligned}$$

Summing A term with B term gives

$$\begin{aligned} 2 \sqrt{\pi }\, \frac{\Gamma (d+1)}{(d+1) \Gamma (d+1+1/2)/2}. \end{aligned}$$

Therefore, the expression above holds for both odd and even d. Moreover, it can be simplified to the following nicer expression

$$\begin{aligned} \frac{2^{2d + 4} (d!)^2}{(2d+2)!}. \end{aligned}$$

\(\square \)

Proof of Equation (12)

Symmetry on the circle gives 0. \(\square \)

Proof of Equation (13)

Symmetry with respect to \(\pi /2\) gives 0. \(\square \)

Proof of Equation (14)

As in the proof of (11), we simplify this integral to get rid of the absolute value and isolate each of its variable.

$$\begin{aligned} \mathrm{Integral}= & {} 2 \int \int _{\mathop {\alpha _1 < \alpha _2}\limits ^{\alpha _1,\alpha _2\in [0,\pi ]^2}} \;\;\sin ^d\alpha _1 \sin ^d\alpha _2 (\cos \alpha _1 -\cos \alpha _2) \cos \alpha _1\cos \alpha _2 \mathrm{d}\alpha _1 \mathrm{d}\alpha _2\\= & {} 2 \Big ( - \int _0^{\pi } \sin ^d \alpha _1 \cos \alpha _1 \int _{\alpha _1}^\pi \sin ^d \alpha _2 \cos ^2 \alpha _2\mathrm{d}\alpha _2 \mathrm{d}\alpha _1 \\&\quad + \int _0^{\pi } \sin ^d \alpha _2 \cos \alpha _2 \int _0^{\alpha _2} \sin ^d \alpha _1 \cos ^2 \alpha _1 \mathrm{d}\alpha _1 \mathrm{d}\alpha _2\Big ) \\= & {} 2 \int _0^{\pi } \sin ^d x \cos x \Big (-\int _{x}^\pi \sin ^d y\cos ^2 y \mathrm{d}y + \int _0^x \sin ^d y\cos ^2 y \mathrm{d}y\Big ). \\= & {} -2 \int _0^{\pi } \sin ^d x \cos x f_d(x) \mathrm{d}x + 2 \int _0^{\pi } \sin ^d x \cos x f_{d+2}(x) \mathrm{d}x , \end{aligned}$$

where \(f_d\) is defined in the proof of (11). The first integral is exactly the opposite as the one in (11), the second integral is quite similar, for d odd it gives:

$$\begin{aligned}&2 \int ^{\pi }_0 \sin ^{d} x \cos x \Big ( 2 \sum _{\mathop {i \mathrm{\ odd}}\limits ^{1\le i\le d+2}} \frac{\Gamma ((d+3)/2) \Gamma (1+i/2)}{\Gamma (2+d/2) \Gamma ((i+1)/2)} \frac{1}{i} \sin ^{i-1} x \cos x\Big ) \mathrm{d} x \\&\quad = 4 \sum _{\mathop {i \mathrm{\ odd}}\limits ^{1\le i\le d+2}} \frac{\Gamma ((d+3)/2)\Gamma (1+i/2)}{\Gamma (2+d/2) \Gamma ((i+1)/2)} \frac{1}{i} \int ^{\pi }_0 \sin ^{d+i-1} x \cos ^2 x\;\mathrm{d}x\;\\&\quad = 4 \sum _{\mathop {i \mathrm{\ odd}}\limits ^{1\le i\le d+2}} \frac{\Gamma ((d+3)/2)\Gamma (1+i/2)}{\Gamma (2+d/2) \Gamma ((i+1)/2)} \frac{1}{i} \big (\frac{1}{d+i+1} \big ) \frac{\Gamma ((d+i)/2)}{\Gamma \big ((d + i + 1)/2 \big )} \sqrt{\pi }\\&\quad = \frac{\Gamma (d-1)}{\Gamma (d+1/2)}. \end{aligned}$$

Substracting the two integrals yields the claimed result. The case with d even can be solved similarly. \(\square \)

Proof of Equation (15)

Simple integration. \(\square \)

Proof of Equation (16)

Use \(\cos ^2 x = 1-\sin ^2 x\) and (10), then simplify. \(\square \)

Proof of Equation (17)

As in the proof of  (11) and (14), we simplify this integral to get rid of the absolute value and isolate each of its variable.

$$\begin{aligned} \mathrm{Integral}= & {} 2 \int \int _{\mathop {\alpha _1 < \alpha _2}\limits ^{\alpha _1,\alpha _2\in [0,\pi ]^2}} \;\;\sin ^d\alpha _1 \sin ^d\alpha _2 (\cos \alpha _1 -\cos \alpha _2) \cos ^2\alpha _1\cos ^2\alpha _2 \mathrm{d}\alpha _1 \mathrm{d}\alpha _2\\= & {} 2 \Big ( \int _0^{\pi } \sin ^d \alpha _1 \cos ^3 \alpha _1 \int _{\alpha _1}^\pi \sin ^d \alpha _2 \cos ^2 \alpha _2\mathrm{d}\alpha _2 \mathrm{d}\alpha _1 \\&- \int _0^{\pi } \sin ^d \alpha _2 \cos ^3 \alpha _2 \int _0^{\alpha _2} \sin ^d \alpha _1 \cos ^2 \alpha _1 \mathrm{d}\alpha _1 \mathrm{d}\alpha _2 \Big ) \\= & {} 2 \int _0^{\pi } \sin ^d x \cos x(1-\sin ^2 x) \Big (\int _{x}^\pi \sin ^d y(1-\sin ^2 y) \mathrm{d}y \\&- \int _0^x \sin ^d y(1-\sin ^2 y) \mathrm{d}y\Big ). \\= & {} 2 \int _0^{\pi } \sin ^d x \cos x f_d(x) \mathrm{d}x - 2 \int _0^{\pi } \sin ^d x \cos x f_{d+2}(x) \mathrm{d}x\\&\qquad \qquad - 2 \int _0^{\pi } \sin ^{d+2} x \cos x f_d(x) \mathrm{d}x + 2 \int _0^{\pi } \sin ^{d+2} x \cos x f_{d+2}(x) \mathrm{d}x , \end{aligned}$$

where \(f_d\) is defined in the proof of (11). The first and fourth integrals are the same as the ones in (11) (with d replaced by \(d+2\) in the fourth integral), the second integral is the same as the one in (14), the third integral is quite similar, for d odd the third integral gives:

$$\begin{aligned}&2 \int ^{\pi }_0 \sin ^{d+2} x \cos x \biggl ( 2 \sum _{\mathop {i \mathrm{\ odd}}\limits ^{1\le i\le d}} \frac{\Gamma ((d+1)/2) \Gamma (1+i/2)}{\Gamma (1+d/2) \Gamma ((i+1)/2)} \frac{1}{i} \sin ^{i-1} x \cos x\biggr ) \mathrm{d} x \\&\quad = 4 \sum _{\mathop {i \mathrm{\ odd}}\limits ^{1\le i\le d}} \frac{\Gamma ((d+1)/2) \Gamma (1+i/2)}{\Gamma (1+d/2) \Gamma ((i+1)/2)} \frac{1}{i} \int ^{\pi }_0 \sin ^{d+i+1} x \cos ^2 x\\&\quad = 4 \sum _{\mathop {i \mathrm{\ odd}}\limits ^{1\le i\le d}} \frac{\Gamma ((d+1)/2) \Gamma (1+i/2)}{\Gamma (1+d/2) \Gamma ((i+1)/2)} \frac{1}{i} \Big (\frac{1}{d+i+3} \Big ) \frac{\Gamma ((d+i+2)/2)}{\Gamma ((d+i+3)/2)}\, \sqrt{\pi }\\&\quad = \frac{4\;\Gamma (d+3)}{(d+3)\Gamma (d+7/2)}. \end{aligned}$$

Adding the four integrals yields the claimed result. The case with d even can be solved similarly. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Castro, P.M.M., Devillers, O. Expected Length of the Voronoi Path in a High Dimensional Poisson–Delaunay Triangulation. Discrete Comput Geom 60, 200–219 (2018). https://doi.org/10.1007/s00454-017-9866-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-017-9866-y

Keywords

Mathematics Subject Classification

Navigation