Skip to main content
Log in

Ramified Rectilinear Polygons: Coordinatization by Dendrons

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic \(l_1\)-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either four-cycles or paths of length at most three. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group \(D_4\)), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. More precisely, according to Whitehead’s definition of an elementary contraction in a simplicial complex [41, p. 247], this step can be represented as a pair of elementary contractions in a triangulation of |G| constructed by splitting each quadrilateral of |G| arbitrarily into two triangles.

References

  1. Aho, A., Hopcroft, J., Ullman, J.: On finding lowest common ancestors in trees. In: Proceedings of the 5th ACM Symposium on Theory of Computing (STOC), pp. 253–265 (1973)

  2. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: a survey and a new algorithm for a distributed environment. Theory Comput. Syst. 37(3), 441–456 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avann, S.P.: Metric ternary distributive semi-lattices. Proc. Am. Math. Soc. 12, 407–414 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bandelt, H.-J.: Networks with Condorcet solutions. Eur. J. Oper. Res. 20, 314–326 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bandelt, H.-J.: Hereditary modular graphs. Combinatorica 8, 149–157 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bandelt, H.-J., Chepoi, V.: Metric graph theory and geometry: a survey. In: Goodman, J.E., Pach, J., Pollack, R. (eds.) Surveys on Discrete and Computational Geometry: Twenty Years Later. Contempoary Mathematics, vol. 453, pp. 49–86. AMS, Providence, RI (2008)

  7. Bandelt, H.-J., van de Vel, M.: Embedding topological median algebras in products of dendrons. Proc. Lond. Math. Soc. (3) 58, 439–453 (1989)

    Article  MATH  Google Scholar 

  8. Bandelt, H.-J., van de Vel, M.: Superextensions and the depth of median graphs. J. Comb. Theory Ser. A 57, 187–202 (1991)

    Article  MATH  Google Scholar 

  9. Bandelt, H.-J., Chepoi, V., Eppstein, D.: Combinatorics and geometry of finite and infinite squaregraphs. SIAM J. Discrete Math. 24, 1399–1440 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Birkhoff, G., Kiss, S.A.: A ternary operation in distributive lattices. Bull. Am. Math. Soc. 52, 749–752 (1947)

    Article  MathSciNet  Google Scholar 

  11. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Clarendon Press, Oxford (1953)

    MATH  Google Scholar 

  12. Bowditch, B.H.: Treelike Structures Arising from Continua and Convergence Groups, vol. 662. Memoirs of the American Mathematical Society (1999)

  13. Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, New York (1999)

    Book  MATH  Google Scholar 

  14. Chepoi, V.: Graphs of some CAT(0) complexes. Adv. Appl. Math. 24, 125–179 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chepoi, V., Dragan, F., Vaxès, Y.: Center and diameter problem in planar quadrangulations and triangulations. In: Proceedings of the 13th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2002), 2002, pp. 346–355

  16. Corneil, D.G.: Lexicographic breadth first search—a survey. In: Graph-Theoretic Methods in Computer Science. Lecture Notes in Computer Science, vol. 3353, pp. 1–19. Springer, Berlin (2004)

  17. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, New York (2008)

    Book  Google Scholar 

  18. Dress, A., Scharlau, R.: Gated sets in metric spaces. Aequationes Math. 34, 112–120 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Inf. Process. Lett. 51(4), 207–211 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Eppstein, D.: Optimally fast incremental Manhattan plane embedding and planar tight span construction. J. Comput. Geom. 2, 144–182 (2011)

    MathSciNet  Google Scholar 

  21. Eppstein, D., Falmagne, J-Cl, Ovchinnikov, S.: Media Theory. Springer, New York (2007)

    Google Scholar 

  22. Frucht, R.: Herstellung von Graphen mit vorgegebener abstrakter Gruppe. Compos. Math. 6, 239–250 (1938)

    MathSciNet  Google Scholar 

  23. Ghys, E., de la Harpe, P.: Les Groupes Hyperboliques d’après M. Gromov. In: Progress in Mathematics, vol. 83. Birkhäuser, Basel (1990)

  24. Graham, R.L., Winkler, P.M.: On isometric embeddings of graphs. Trans. Am. Math. Soc. 288, 527–536 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gromov, M.: Hyperbolic groups. In: Gersten, S.M. (ed.) Essays in Group Theory. MSRI Publications, vol. 8, pp. 75–263. Springer, Berlin (1987)

  26. Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graphs, 2nd edn. CRC Press Taylor & Francis Group, Boca Raton (2011)

    MATH  Google Scholar 

  27. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Imrich, W., Klavžar, S., Mulder, H.M.: Median graphs and triangle-free graphs. SIAM J. Discrete Math. 12(1), 111–118 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Isbell, J.R.: Median algebra. Trans. Am. Math. Soc. 260, 319–362 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Klavžar, S., Kovše, M.: Induced cycles in crossing graphs of median graphs. Discret. Math. 309, 6585–6589 (2009)

    Article  MATH  Google Scholar 

  31. Menger, K.: Untersuchungen über allgemeine Metrik, I–III. Math. Ann. 100, 75–163 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  33. Mulder, H.M.: The structure of median graphs. Discret. Math. 24, 197–204 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mulder, H.M.: The Interval function of a graph. In: Mathematical Centre Tracts, vol. 132. Mathematisch Centrum, Amsterdam (1980)

  35. Papadopoulos, A.: Metric spaces, convexity and nonpositive curvature. In: IRMA Lectures in Mathematics and Theoretical Physics, vol. 6. European Mathematical Society, Zürich (2005)

  36. Roller, M.: Poc sets, median algebras and group actions. Univ. of Southampton, preprint, (1998)

  37. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sabidussi, G.: Graphs with given group and given graph-theoretical properties. Can. J. Math. 9, 515–525 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  39. van de Vel, M.: Matching binary convexities. Topology Appl. 16, 207–235 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. van de Vel, M.: Theory of Convex Structures. Elsevier, Amsterdam (1993)

    MATH  Google Scholar 

  41. Whitehead, J.H.C.: Simplicial spaces, nuclei and \(m\)-groups. Proc. Lond. Math. Soc. (2) 45, 243–327 (1939)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank anonymous referees for careful reading of the first version and several corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Eppstein.

Additional information

Editor in Charge: Jànos Pach

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandelt, HJ., Chepoi, V. & Eppstein, D. Ramified Rectilinear Polygons: Coordinatization by Dendrons. Discrete Comput Geom 54, 771–797 (2015). https://doi.org/10.1007/s00454-015-9743-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9743-5

Keywords

Navigation