Skip to main content
Log in

Almost Universal Anonymous Rendezvous in the Plane

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Two mobile agents represented by points freely moving in the plane and starting at two different positions, have to meet. The meeting, called rendezvous, occurs when agents are at distance at most r of each other and never move after this time, where r is a positive real unknown to them, called the visibility radius. Agents are anonymous and execute the same deterministic algorithm. Each agent has a set of private attributes, some or all of which can differ between agents. These attributes are: the initial position of the agent, its system of coordinates (orientation and chirality), the rate of its clock, its speed when it moves, and the time of its wake-up. If all attributes (except the initial positions) are identical and agents start at distance larger than r then they can never meet, as the distance between them can never change. However, differences between attributes make it sometimes possible to break the symmetry and accomplish rendezvous. Such instances of the rendezvous problem (formalized as lists of attributes), are called feasible. Our contribution is three-fold. We first give an exact characterization of feasible instances. Thus it is natural to ask whether there exists a single algorithm that guarantees rendezvous for all these instances. We give a strong negative answer to this question: we show two sets \(S_1\) and \(S_2\) of feasible instances such that none of them admits a single rendezvous algorithm valid for all instances of the set. On the other hand, we construct a single algorithm that guarantees rendezvous for all feasible instances outside of sets \(S_1\) and \(S_2\). We observe that these exception sets \(S_1\) and \(S_2\) are geometrically very small, compared to the set of all feasible instances: they are included in low-dimension subspaces of the latter. Thus, our rendezvous algorithm handling all feasible instances other than these small sets of exceptions can be justly called almost universal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Note that, as opposed to [20], we needed to say precisely which moves are allowed because some of our results are negative and thus we need to prove that some actions are impossible. In [20] this could be left implicit, as they only had positive results. We decided for the easiest option with segment moves but is is easy to see that all our results (also the negative ones) remain valid if circles are allowed as they were in [20].

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36, 56–82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33, 673–683 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alpern, S.: Rendezvous search on labelled networks. Naval Res. Logistics 49, 256–274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. International Series in Operations Research and Management Science, Kluwer Academic Publisher, Alphen aan den Rijn (2002)

    MATH  Google Scholar 

  5. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. J. Appl. Probab. 36, 223–231 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anderson, E., Weber, R.: The rendezvous problem on discrete locations. J. Appl. Probab. 28, 839–851 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Attiya, H., Snir, M., Warmuth, M.: Computing on an anonymous ring. J. ACM 35, 845–875 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Angluin, D.: Local and global properties in networks of processors. In: Proc. 12th Symposium on the Theory of Computing (STOC 1980), pp. 82–93

  9. Bampas, E., Czyzowicz, J., Gasieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Proc. 24th International Symposium on Distributed Computing (DISC 2010), pp. 297–311

  10. Beck, A., Newman, D.J.: Yet more on the linear search problem. Israel J. Math. 8, 419–429 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge. In: Proc. 18th ACM Symp. on Principles of Distributed Computing (PODC 1999), pp. 181–188

  12. Bouchard, S., Dieudonné, Y., Ducourthial, B.: Byzantine gathering in networks. Distrib. Comput. 29, 435–457 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bouchard, S., Bournat, M., Dieudonné, Y., Dubois, S., Petit, F.: Asynchronous approach in the plane: a deterministic polynomial algorithm. Distrib. Comput. 32, 317–337 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bouchard, S., Dieudonné, Y., Lamani, A.: Byzantine gathering in polynomial time. Distrib. Comput. 35, 235–263 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bouchard, S., Dieudonné, Y., Petit, F., Pelc, A.: Proc. 32nd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2020), pp. 117–127

  16. Chalopin, J., Das, S., Kosowski, A.: Constructing a map of an anonymous graph: applications of universal sequences. In: Proc. 14th International Conference on Principles of Distributed Systems (OPODIS 2010), pp. 119–134

  17. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41, 829–879 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38, 276–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Czyzowicz, J., Gasieniec, L., Killick, R., Kranakis, E.: Symmetry breaking in the plane: rendezvous by robots with unknown attributes. In: Proc. 38th ACM Symp. on Principles of Distributed Computing (PODC 2019), pp. 4–13

  21. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distrib. Comput. 25, 165–178 (2012)

    Article  MATH  Google Scholar 

  22. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8, 37:1-37:14 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclusive searching on rings under weak assumptions. Distrib. Comput. 30, 17–48 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theoret. Comput. Sci. 355, 315–326 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dieudonné, Y., Pelc, A.: Anonymous meeting in networks. Algorithmica 74, 908–946 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dieudonné, Y., Pelc, A.: Deterministic polynomial approach in the plane. Distrib. Comput. 28, 111–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial cost. SIAM J. Comput. 44, 844–867 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11, 1:1-1:28 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detection. Theoret. Comput. Sci. 428, 47–57 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous oblivious robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)

    Article  MATH  Google Scholar 

  32. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees. ACM Trans. Algorithms 9, 17:1-17:24 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Guilbault, S., Pelc, A.: Asynchronous rendezvous of anonymous agents in arbitrary graphs. In: Proc. 15th International Conference on Principles of Distributed Systems (OPODIS 2011), pp. 162–173

  34. Koucký, M.: Universal traversal sequences with backtracking. J. Comput. Syst. Sci. 65, 717–726 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kowalski, D., Malinowski, A.: How to meet in anonymous network. Theor. Comput. Sci. 399, 141–156 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with limited memory. In: Proc. 8th Latin American Theoretical Informatics (LATIN 2008), Springer LNCS 4957, pp. 605–616

  37. Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Mobile agent rendezvous in a ring. In: Proc. 23rd Int. Conference on Distributed Computing Systems (ICDCS 2003), IEEE, pp. 592–599

  38. Kranakis, E., Krizanc, D., van der Berg, J.: Computing Boolean functions on anonymous networks. Inf. Comput. 114, 214–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lynch, N.L.: Distributed Algorithms. Morgan Kaufmann Publ. Inc., San Francisco (1996)

    MATH  Google Scholar 

  40. Pelc, A.: Deterministic rendezvous in networks: a comprehensive survey. Networks 59, 331–347 (2012)

    Article  MathSciNet  Google Scholar 

  41. Pelc, A., Yadav, R.N.: Using time to break symmetry: universal deterministic anonymous rendezvous. In: Proc. 31st ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2019), pp. 85–92

  42. Pelc, A., Yadav, R.N.: Latecomers help to meet: deterministic anonymous gathering in the plane. In: Proc. 21st International Conference on Distributed Computing and Networking (ICDCN 2020), pp. 4:1–4:10

  43. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28, 1347–1363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. ACM Trans. Algorithms 10, 12:1-12:15 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yamashita, M., Kameda, T.: Computing on anonymous networks: part I-characterizing the solvable cases. IEEE Trans. Parallel Distrib. Syst. 7, 69–89 (1996)

    Article  Google Scholar 

  46. Yu, X., Yung, M.: Agent rendezvous: a dynamic symmetry-breaking problem. In: Proceedings of the Colloquium on Automata, Languages, and Programming (ICALP 1996), Springer LNCS 1099, 610–621

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoann Dieudonné.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared in [15]. One of the co-authors of the preliminary version, Sébastien Bouchard, asked to be removed from the list of authors.

Andrzej Pelc was supported in part by NSERC discovery Grant 2018-03899 and by the Research Chair in Distributed Computing of the Université du Québec en Outaouais. Performed within Project ESTATE (Ref. ANR-16-CE25-0009-03), supported by French state funds managed by the ANR (Agence Nationale de la Recherche).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dieudonné, Y., Pelc, A. & Petit, F. Almost Universal Anonymous Rendezvous in the Plane. Algorithmica 85, 3110–3143 (2023). https://doi.org/10.1007/s00453-023-01122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-023-01122-2

Keywords

Navigation