Skip to main content
Log in

Light Spanners for High Dimensional Norms via Stochastic Decompositions

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Spanners for low dimensional spaces (e.g. Euclidean space of constant dimension, or doubling metrics) are well understood. This lies in contrast to the situation in high dimensional spaces, where except for the work of Har–Peled, Indyk and Sidiropoulos (SODA 2013), who showed that any n-point Euclidean metric has an O(t)-spanner with \(\tilde{O}(n^{1+1/t^2})\) edges, little is known. In this paper we study several aspects of spanners in high dimensional normed spaces. First, we build spanners for finite subsets of \(\ell _p\) with \(1<p\le 2\). Second, our construction yields a spanner which is both sparse and also light, i.e., its total weight is not much larger than that of the minimum spanning tree. In particular, we show that any n-point subset of \(\ell _p\) for \(1<p\le 2\) has an O(t)-spanner with \(n^{1+\tilde{O}(1/t^p)}\) edges and lightness \(n^{\tilde{O}(1/t^p)}\). In fact, our results are more general, and they apply to any metric space admitting a certain low diameter stochastic decomposition. It is known that arbitrary metric spaces have an O(t)-spanner with lightness \(O(n^{1/t})\). We exhibit the following tradeoff: metrics with decomposability parameter \(\nu =\nu (t)\) admit an O(t)-spanner with lightness \(\tilde{O}(\nu ^{1/t})\). For example, metrics with doubling constant \(\lambda \), graphs of genus g, and graphs of treewidth k, all have spanners with stretch O(t) and lightness \(\tilde{O}(\lambda ^{1/t})\), \(\tilde{O}(g^{1/t})\), \(\tilde{O}(k^{1/t})\) respectively. While these families do admit a (\(1+\epsilon \))-spanner, its lightness depend exponentially on the dimension (resp. \(\log g\), k). Our construction alleviates this exponential dependency, at the cost of incurring larger stretch.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. That is a set of points \(X\subset \mathbb {R}^d\) equipped with the Euclidean metric \(\ell _2\), for small d.

  2. A metric space (Xd) has doubling constant \(\lambda \) if for every \(x\in X\) and radius \(r>0\), the ball B(x, 2r) can be covered by \(\lambda \) balls of radius r. The doubling dimension is defined as \(\mathrm{ddim}=\log _2\lambda \). A d-dimensional \(\ell _p\) space has \(\mathrm{ddim}=\Theta (d)\), and every n point metric has \(\mathrm{ddim}=O(\log n)\).

  3. The genus of a graph is minimal integer g, such that the graph could be drawn on a surface with g “handles”.

  4. \(d(A_i,B_i)=\max \{d(x,y)~\mid ~ x\in A_i,~y\in B_i\}\) is the maximum pairwise distance between \(A_i\) to \(B_i\).

  5. Note that there is no explicit dependence between the stretch parameter t, and the sparsity/lightness. Nonetheless, these dependence is implicit in the decomposition parameters, as for smaller stretch t, the inclusion parameter \(\delta \) becomes smaller as well, and thus the sparsity/lightness grow.

  6. Originally this fact was observed by James R. Lee and Anastasios Sidiropoulos. A proof sketch could be found in the full version of [7].

References

  1. Abraham, I., Bartal, Y., Neiman, O.: Advances in metric embedding theory. Adv. Math. 228(6), 3026–3126 (2011)

    Article  MathSciNet  Google Scholar 

  2. Awerbuch, B., Baratz, A. E., Peleg, D.: Cost-sensitive analysis of communication protocols. In Proceedings of the Ninth Annual ACM Symposium on Principles of Distributed Computing, Quebec City, Quebec, Canada, August 22-24, 1990, pp 177–187, (1990)

  3. Awerbuch, B., Baratz, A. E., Peleg, D.: Efficient broadcast and light-weight spanners. Manuscript, (1991)

  4. Ahmed, A.R., Bodwin, G., Sahneh, F.D., Hamm, K., Jebelli, M.J.L., Kobourov, S.G., Spence, R.: Graph spanners: A tutorial review. Comput. Sci. Rev. 37, 100253 (2020)

    Article  MathSciNet  Google Scholar 

  5. Abraham, I., Chechik, S., Elkin, M., Filtser, A., Neiman, O.: Ramsey spanning trees and their applications. ACM Trans. Algorithms 16(2), 19:1-19:21 (2020)

    Article  MathSciNet  Google Scholar 

  6. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9, 81–100 (1993)

    Article  MathSciNet  Google Scholar 

  7. Abraham, I., Gavoille, C., Gupta, A., Neiman, O., Talwar, K.: Cops, robbers, and threatening skeletons: Padded decomposition for minor-free graphs. SIAM J. Comput. 48(3), 1120–1145 (2019)

    Article  MathSciNet  Google Scholar 

  8. Ahn, K. J., Guha, S., McGregor, A.: Graph sketches: sparsification, spanners, and subgraphs. In Michael Benedikt, Markus Krötzsch, and Maurizio Lenzerini, editors, Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pp 5–14. ACM, (2012)

  9. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pp 459–468, (2006)

  10. Awerbuch, B.: Communication-time trade-offs in network synchronization. In Proc. of 4th PODC, pp 272–276, (1985)

  11. Awerbuch, B.: Complexity of network synchronization. J. ACM 32(4), 804–823 (1985)

    Article  MathSciNet  Google Scholar 

  12. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications. In Proc. of 37th FOCS, pp 184–193, (1996)

  13. Biswas, A. S., Dory, M., Ghaffari, M., Mitrovic, S., Nazari, Y.: Massively parallel algorithms for distance approximation and spanners. In Kunal Agrawal and Yossi Azar, editors, SPAA ’21: 33rd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, 6-8 July, 2021, pp 118–128. ACM, (2021)

  14. Bhore, S., Filtser, A., Khodabandeh, H., Tóth, C. D.: Online spanners in metric spaces. CoRR, arXiv:2202.09991, (2022)

  15. Braynard, R., Kostic, D., Rodriguez, A., Chase, J., Vahdat, A.: Opus: an overlay peer utility service. In Prof. of 5th OPENARCH, (2002)

  16. Biswal, P., Lee, J.R., Rao, S.: Eigenvalue bounds, spectral partitioning, and metrical deformations via flows. J. ACM 57(3), 1–23 (2010)

    Article  MathSciNet  Google Scholar 

  17. Borradaile, G., Le, H., Wulff-Nilsen, C.: Minor-free graphs have light spanners. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 767–778, (2017)

  18. Borradaile, G., Le, H., Wulff-Nilsen, C.: Greedy spanners are optimal in doubling metrics. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pp 2371–2379. SIAM, (2019)

  19. Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph spanners. Int. J. Comput. Geometry Appl. 5, 125–144 (1995)

    Article  MathSciNet  Google Scholar 

  20. Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers. SIAM J. Discrete Math. 20(2), 463–501 (2006)

    Article  MathSciNet  Google Scholar 

  21. Cohen-Addad, V., Filtser, A., Klein, P. N., Le, H.: On light spanners, low-treewidth embeddings and efficient traversing in minor-free graphs. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pp 589–600. IEEE, (2020)

  22. Callahan, P.B., Kosaraju, S.R.: A decomposition of multi-dimensional point-sets with applications to \(k\)-nearest-neighbors and \(n\)-body potential fields. In Proc. of 24th STOC, pages 546–556, (1992)

  23. Calinescu, G., Karloff, H., Rabani, Y.: Approximation algorithms for the 0-extension problem. SIAM J. Comput. 34(2), 358–372 (2005)

    Article  MathSciNet  Google Scholar 

  24. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. SIAM J. Comput. 28(1), 210–236 (1998)

    Article  MathSciNet  Google Scholar 

  25. Chechik, S., Wulff-Nilsen, C.: Near-optimal light spanners. ACM Trans. Algorithms 14(3), 33:1-33:15 (2018)

    Article  MathSciNet  Google Scholar 

  26. Das, G., Heffernan, P. J., Narasimhan, G.: Optimally sparse spanners in 3-dimensional euclidean space. In Proceedings of the Ninth Annual Symposium on Computational GeometrySan Diego, CA, USA, May 19-21, 1993, pages 53–62, (1993)

  27. Kostic, D., Vahdat, A.: Latency versus cost optimizations in hierarchical overlay networks. Technical report, Duke University, (CS-2001-04), (2002)

  28. Elkin, M., Filtser, A., Neiman, O.: Distributed construction of light networks. In Yuval Emek and Christian Cachin, editors, PODC ’20: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy, August 3-7, 2020, pp 483–492. ACM, (2020)

  29. Elkin, M.: Computing almost shortest paths. ACM Trans. Algorithms 1(2), 283–323 (2005)

    Article  MathSciNet  Google Scholar 

  30. Elkin, M., Neiman, O., Solomon, S.: Light spanners. In Proc. of 41th ICALP, pp 442–452, (2014)

  31. Elkin, M., Zhang, J.: Efficient algorithms for constructing (1+epsilon, beta)-spanners in the distributed and streaming models. Distributed Computing 18(5), 375–385 (2006)

    Article  Google Scholar 

  32. Filtser, A.: On strong diameter padded decompositions. In Dimitris Achlioptas and László A. Végh, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019, September 20-22, 2019, Massachusetts Institute of Technology, Cambridge, MA, USA, volume 145 of LIPIcs, pages 6:1–6:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2019)

  33. Filtser, A.: Hop-constrained metric embeddings and their applications. In 62st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, February 7-10, 2022, pages 492–503. IEEE, (2021)

  34. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the streaming model: the value of space. In Proc. of 16th SODA, pp 745–754, (2005)

  35. Filtser, A., Kapralov, M., Nouri, N.: Graph spanners by sketching in dynamic streams and the simultaneous communication model. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pp. 1894–1913. SIAM, (2021)

  36. Filtser, A., Le, H.: Clan embeddings into trees, and low treewidth graphs. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 342–355. ACM, (2021)

  37. Filtser, A., Neiman, O.: Light spanners for high dimensional norms via stochastic decompositions. In Yossi Azar, Hannah Bast, and Grzegorz Herman, editors, 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki, Finland, volume 112 of LIPIcs, pages 29:1–29:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2018)

  38. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, STOC ’03, pages 448–455, New York, NY, USA, (2003). ACM

  39. Feige, U., Schechtman, G.: On the optimality of the random hyperplane rounding technique for max cut. Random Struct. Algorithms 20(3), 403–440 (2002)

    Article  MathSciNet  Google Scholar 

  40. Filtser, A., Solomon, S.: The greedy spanner is existentially optimal. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016, pp. 9–17, (2016)

  41. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion embeddings. In: Proceedings of 44th FOCS, pages 534–543, (2003)

  42. Gottlieb, L.A.: A light metric spanner. In: Proceedings of 56th FOCS, pp 759–772, (2015)

  43. Grigni, M.: Approximate TSP in graphs with forbidden minors. In: Proceedings of 27th ICALP, pp 869–877, (2000)

  44. Gross, J.L., Tucker, T.W.: Topological Graph Theory. Wiley-Interscience, New York, NY, USA (1987)

    MATH  Google Scholar 

  45. Har-Peled, S., Indyk, P., Sidiropoulos, A.: Euclidean spanners in high dimensions. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pp 804–809, (2013)

  46. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

    Article  MathSciNet  Google Scholar 

  47. Klein, P. N.: A subset spanner for planar graphs, : with application to subset TSP. In Jon M. Kleinberg, editor, Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006, pages 749–756. ACM, (2006)

  48. Krauthgamer, R., Lee, J. R., Mendel, M., Naor, A.: Measured descent: A new embedding method for finite metrics. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pp 434–443, Washington, DC, USA, (2004). IEEE Computer Society

  49. Kelner, J. A., Lee, J. R., Price, G. N., Teng, S.-H.: Higher eigenvalues of graphs. In FOCS, pp 735–744, (2009)

  50. Klein, P. N., Plotkin, S. A., Rao, S.: Excluded minors, network decomposition, and multicommodity flow. In STOC, pp 682–690, (1993)

  51. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15(2), 215–245 (1995)

    Article  MathSciNet  Google Scholar 

  52. Lee, J.R., Naor, A.: Extending lipschitz functions via random metric partitions. Invent. Math. 160(1), 59–95 (2005)

    Article  MathSciNet  Google Scholar 

  53. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46, 787–832 (1999)

    Article  MathSciNet  Google Scholar 

  54. Linial, N., Saks, M.: Low diameter graph decompositions. Combinatorica 13(4), 441–454 (1993). (Preliminary version in 2nd SODA, 1991)

    Article  MathSciNet  Google Scholar 

  55. Lee, J. R., Sidiropoulos, A.: Genus and the geometry of the cut graph. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pp 193–201, (2010)

  56. Le, H., Solomon, S.: Truly optimal euclidean spanners. In David Zuckerman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1078–1100. IEEE Computer Society, (2019)

  57. Mendel, M., Naor, A.: Ramsey partitions and proximity data structures. J. Eur. Math. Soc. 9(2), 253–275 (2007)

    Article  MathSciNet  Google Scholar 

  58. Nguyen, H.L.: Approximate nearest neighbor search in \(\ell _p\). CoRR, arXiv:1306.3601, (2013)

  59. Narasimhan, G., Smid, Michiel H.M.: Geometric spanner networks. Cambridge University Press, (2007)

  60. Peleg, D.: Proximity-preserving labeling schemes and their applications. In Graph-Theoretic Concepts in Computer Science, 25th International Workshop, WG ’99, Ascona, Switzerland, June 17-19, 1999, Proceedings, pp 30–41, (1999)

  61. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia, PA (2000)

    Book  Google Scholar 

  62. Parter, M., Rubinfeld, R., Vakilian, A., Yodpinyanee, A.: Local computation algorithms for spanners. In Avrim Blum, editor, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, volume 124 of LIPIcs, pp 58:1–58:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, (2019)

  63. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18(4), 740–747 (1989)

    Article  MathSciNet  Google Scholar 

  64. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM 36(3), 510–530 (1989)

    Article  MathSciNet  Google Scholar 

  65. Rao, S.B.: Small distortion and volume preserving embeddings for planar and Euclidean metrics. In SOCG, pp 300–306, (1999)

  66. Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In Automata, Languages and Programming, 32nd International Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, pp 261–272, (2005)

  67. Roditty, L., Zwick, U.: On dynamic shortest paths problems. In Proc. of 32nd ESA, pp 580–591, (2004)

  68. Salowe, J.S.: Construction of multidimensional spanner graphs, with applications to minimum spanning trees. In: Proceedings of 7th SoCG, pp 256–261, (1991)

  69. Smid, Michiel H.M.: The weak gap property in metric spaces of bounded doubling dimension. In Efficient Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday, pp 275–289, (2009)

  70. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pp 281–290, (2004)

  71. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of 13th SPAA, pp 1–10, (2001)

  72. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  73. Vaidya, P.M.: A sparse graph almost as good as the complete graph on points in \(k\) dimensions. Discrete Comput. Geom. 6, 369–381 (1991)

    Article  MathSciNet  Google Scholar 

  74. Vogel, J., Widmer, J., Farin, D., Mauve, M., Effelsberg, W.: Priority-based distribution trees for application-level multicast. In Proceedings of the 2nd Workshop on Network and System Support for Games, NETGAMES 2003, Redwood City, California, USA, May 22-23, 2003, pp 148–157, (2003)

  75. Wu, B.Y., Chao, K.-M., Tang, C.Y.: Light graphs with small routing cost. Networks 39(3), 130–138 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank an anonymous reviewer for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Filtser.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared in proceedings of 26th European Symposium on Algorithms (ESA 2018) [37]. This full version contains a new result on light (sub-graph) spanners for graphs in general (Theorem 4), and for graph of bounded treewidth (Corollary 7) in particular.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filtser, A., Neiman, O. Light Spanners for High Dimensional Norms via Stochastic Decompositions. Algorithmica 84, 2987–3007 (2022). https://doi.org/10.1007/s00453-022-00994-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00994-0

Keywords

Navigation