Skip to main content
Log in

Graph Searches and Their End Vertices

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

For a graph search algorithm, the end vertex problem is concerned with which vertices of a graph can be the last visited by this algorithm. We characterize all maximum cardinality searches on chordal graphs and derive from this characterization a polynomial-time algorithm for the end vertex problem of maximum cardinality searches on chordal graphs. It is complemented by a proof of NP-completeness of the same problem on weakly chordal graphs. We also show linear-time algorithms for deciding end vertices of breadth-first searches on interval graphs and end vertices of lexicographic depth-first searches on chordal graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. A graph is a split graph if its vertex set can be partitioned into a clique and an independent set. Definitions of weakly chordal graphs and interval graphs are deferred to Sects. 4 and 6, respectively.

  2. The algorithm mcs\(^{+}\) is defined in the same spirit of lbfs\(^{+}\), and it has not been explicitly mentioned in literature because no application of this algorithm has been discovered.

  3. This is not a problem for lbfs\(^{+}\), because it never merges two parts.

  4. One may note that \(\{[{\mathtt {lp}(v)}, {\mathtt {rp}(v)}]\mid v\in V(G)\}\) gives an interval representation for G.

References

  1. Beisegel, J., Denkert, C., Köhler, E., Krnc, M., Pivac, N., Scheffler, R., Strehler, M.: On the end-vertex problem of graph searches. Discrete Math. Theor. Comput. Sci. 21(1), (2019). https://doi.org/10.23638/DMTCS-21-1-13

  2. Bernstein, P.A., Goodman, N.: Power of natural semijoins. SIAM J. Comput. 10(4), 751–771 (1981). https://doi.org/10.1137/0210059

    Article  MathSciNet  MATH  Google Scholar 

  3. Berry, A., Blair, J.R.S., Bordat, J.P., Simonet, G.: Graph extremities defined by search algorithms. Algorithms 3(2), 100–124 (2010). https://doi.org/10.3390/a3020100

    Article  MathSciNet  MATH  Google Scholar 

  4. Berry, A.: Separability generalizes Dirac’s theorem. Discrete Appl. Math. 84(1–3), 43–53 (1998). https://doi.org/10.1016/S0166-218X(98)00005-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Blair, J.R.S., Peyton, B.W.: An introduction to chordal graphs and clique trees. In: George, J.A., Gilbert, J.R., Liu, J.W.-H. (eds.) Graph Theory and Sparse Matrix Computation, Volume 56 of IMA, pp. 1–29. Springer, Berlin (1993)

    Google Scholar 

  6. Cao, Y.: Recognizing (unit) interval graphs by zigzag graph searches. In: Le Viet, H., King, V. (eds) Proceedings of the 4th SIAM Symposium on Simplicity in Algorithms (SOSA), pp. 92–106. SIAM (2021). https://doi.org/10.1137/1.9781611976496.11

  7. Charbit, P., Habib, M., Mamcarz, A.: Influence of the tie-break rule on the end-vertex problem. Discrete Math. Theor. Comput. Sci. 16(2), 57–72 (2014). https://doi.org/10.46298/dmtcs.2081

    Article  MathSciNet  MATH  Google Scholar 

  8. Corneil, D.G.: Lexicographic breadth first search: a survey. In: Volume 3353 of LNCS, pp. 1–19. Springer (2004). https://doi.org/10.1007/978-3-540-30559-0_1

  9. Corneil, D.G.: A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs. Discrete Appl. Math. 138(3), 371–379 (2004). https://doi.org/10.1016/j.dam.2003.07.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Corneil, D.G., Dalton, B., Habib, M.: LDFS-based certifying algorithm for the minimum path cover problem on cocomparability graphs. SIAM J. Comput. 42(3), 792–807 (2013). https://doi.org/10.1137/11083856X

    Article  MathSciNet  MATH  Google Scholar 

  11. Corneil, D.G., Köhler, E., Lanlignel, J.-M.: On end-vertices of lexicographic breadth first searches. Discrete Appl. Math. 158(5), 434–443 (2010). https://doi.org/10.1016/j.dam.2009.10.001

    Article  MathSciNet  MATH  Google Scholar 

  12. Corneil, D.G.: A unified view of graph searching. SIAM J. Discrete Math. 22(4), 1259–1276 (2008). https://doi.org/10.1137/050623498

    Article  MathSciNet  MATH  Google Scholar 

  13. Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28(4), 1284–1297 (1999). https://doi.org/10.1137/S0097539795282377. (A preliminary version appeared in ICALP 1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of interval graphs. SIAM J. Discrete Math. 23(4), 1905–1953 (2009). https://doi.org/10.1137/S0895480100373455. (A preliminary version appeared in SODA 1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dirac, G.A.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 25(1), 71–76 (1961). https://doi.org/10.1007/BF02992776

    Article  MathSciNet  MATH  Google Scholar 

  16. Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855 (1965). https://doi.org/10.2140/pjm.1965.15.835

    Article  MathSciNet  MATH  Google Scholar 

  17. Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl, M. (eds) Proceedings of the 21st International Workshop on Graph-Theoretic Concepts in Computer Science (WG), volume 1017 of LNCS, pp. 358–371. Springer (1995). https://doi.org/10.1007/3-540-60618-1_88

  18. Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoret. Comput. Sci. 234(1–2), 59–84 (2000). https://doi.org/10.1016/S0304-3975(97)00241-7

    Article  MathSciNet  MATH  Google Scholar 

  19. Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974). https://doi.org/10.1145/321850.321852

    Article  MathSciNet  MATH  Google Scholar 

  20. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727. (A preliminary version appeared in CCC 1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kratsch, D., Liedloff, M., Meister, D.: End-vertices of graph search algorithms. In: Paschos, V.T., Widmayer, P. (eds) Proceedings of the 12th International Conference on Algorithms and Complexity (CIAC), volume 9079 of Lecture Notes in Computer Science, pp. 300–312. Springer (2015). https://doi.org/10.1007/978-3-319-18173-8_22

  22. Li, P., Yaokun, W.: A four-sweep LBFS recognition algorithm for interval graphs. Discrete Math. Theor. Comput. Sci. 16(3), 23–50 (2014). https://doi.org/10.46298/dmtcs.2094

    Article  MathSciNet  MATH  Google Scholar 

  23. Nagamochi, H.: Computing edge-connectivity in multigraphs and capacitated graphs. SIAM J. Discrete Math. 5(1), 54–66 (1992). https://doi.org/10.1137/0405004

    Article  MathSciNet  MATH  Google Scholar 

  24. Nagamochi, H., Ibaraki, T.: Algorithmic aspects of graph connectivity. In: Encyclopedia of Mathematics and its Applications. Cambridge University Press (2008). https://doi.org/10.1017/CBO9780511721649

  25. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976). https://doi.org/10.1137/0205021. (A preliminary version appeared in STOC 1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sethi, R.: Scheduling graphs on two processors. SIAM J. Comput. 5(1), 73–82 (1976). https://doi.org/10.1137/0205005

    Article  MathSciNet  MATH  Google Scholar 

  27. Shier, D.R.: Some aspects of perfect elimination orderings in chordal graphs. Discrete Appl. Math. 7(3), 325–331 (1984). https://doi.org/10.1016/0166-218X(84)90008-8

    Article  MathSciNet  MATH  Google Scholar 

  28. Simon, K.: A new simple linear algorithm to recognize interval graphs. In: Computational Geometry: Methods, Algorithms and Applications, International Workshop on Computational Geometry CG’91, Bern, Switzerland, March 21–22, pp. 289–308 (1991). https://doi.org/10.1007/3-540-54891-2_22

  29. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972). https://doi.org/10.1137/0201010. (A preliminary version appeared in SWAT (FOCS) 1971)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984). With Addendum in the same Journal 14(1):254–255 (1985.) https://doi.org/10.1137/0213035

  31. Tedder, M., Corneil, D.G., Habib, M., Paul, C.: Simpler linear-time modular decomposition via recursive factorizing permutations. In: Automata, Languages and Programming (ICALP), Volume 5125 of LNCS, pp. 634–645. Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70575-8_52

  32. Zou, M., Wang, Z., Wang, J., Cao, Y.: End vertices of graph searches on bipartite graphs. Inf. Process. Lett. 173, 106176 (2022). https://doi.org/10.1016/j.ipl.2021.106176

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Y.C. would like to thank Jing Huang for bringing the end vertex problems to his attention.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixin Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appears in the Proceedings of the 30th International Symposium on Algorithms and Computation (ISAAC 2019).

G. Rong, Y. Cao, J. Wang, Z. Wang: Supported by National Natural Science Foundation of China (61828205, 61672536), Hunan Provincial Key Lab on Bioinformatics, and Hunan Provincial Science and Technology Program (2018WK4001).

Y. Cao: Supported in part by the Hong Kong Research Grants Council (RGC) under Grant 15201317 and the National Natural Science Foundation of China (NSFC) under Grant 61972330.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, G., Cao, Y., Wang, J. et al. Graph Searches and Their End Vertices. Algorithmica 84, 2642–2666 (2022). https://doi.org/10.1007/s00453-022-00981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00981-5

Keywords

Navigation