Skip to main content
Log in

When Can Graph Hyperbolicity be Computed in Linear Time?

  • Published:
Algorithmica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hyperbolicity is a distance-based measure of how close a given graph is to being a tree. Due to its relevance in modeling real-world networks, hyperbolicity has seen intensive research over the last years. Unfortunately, the best known algorithms used in practice for computing the hyperbolicity number of an n-vertex graph have running time \(O(n^4)\). Exploiting the framework of parameterized complexity analysis, we explore possibilities for “linear-time FPT” algorithms to compute hyperbolicity. For example, we show that hyperbolicity can be computed in \(2^{O(k)} + O(n +m)\) time (where m and k denote the number of edges and the size of a vertex cover in the input graph, respectively) while at the same time, unless the Strong Exponential Time Hypothesis (SETH) fails, there is no \(2^{o(k)}\cdot n^{2-\varepsilon }\)-time algorithm for every \(\varepsilon >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Cographs are the graphs without induced \(P_4\)s [10]. The parameter distance to cographs is upper-bounded by the parameter distance to cluster graph [15] and thus also by the parameter vertex cover number.

  2. The Strong Exponential Time Hypothesis [23, 24] states that there is no \(O((2-\epsilon )^n)\)-time algorithm deciding k-SAT, where \(\epsilon >0\) is independent of k and n denotes the number of variables.

  3. This case is often left undefined in the literature. Our definition, however, allows to consider also disconnected graphs.

  4. Note that there is also a slightly different definition where graphs that we call \(\delta \)-hyperbolic are called \(2\delta \)-hyperbolic [8, 28]; we follow the definition of Brinkmann et al. [7].

References

  1. Abboud, A., Vassilevska Williams, V., Wang, J. R.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: Proceedings of 27th SODA, pp. 377–391. SIAM (2016)

  2. Abu-Ata, M., Dragan, F.F.: Metric tree-like structures in real-world networks: an empirical study. Networks 67(1), 49–68 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bentert, M., Dittmann, A., Kellerhals, L., Nichterlein, A., Niedermeier, R.: Towards improving Brandes’ algorithm for betweenness centrality. arXiv:1802.06701 (2018). Extended abstract to appear in Proceedings of 29th ISAAC

  4. Borassi, M., Coudert, D., Crescenzi, P., Marino, A.: On computing the hyperbolicity of real-world graphs. In: Proceedings of 23rd ESA, vol. 9294 of LNCS, pp. 215–226. Springer, Berlin (2015)

  5. Borassi, M., Crescenzi, P., Habib, M.: Into the square: on the complexity of some quadratic-time solvable problems. Electron. Notes Theor. Comput. Sci. 322, 51–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: a Survey, vol. 3 of SIAM Monographs on Discrete Mathematics and Applications. SIAM (1999)

  7. Brinkmann, G., Koolen, J.H., Moulton, V.: On the hyperbolicity of chordal graphs. Ann. Combin. 5(1), 61–69 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, N., Coudert, D., Lancin, A.: On computing the Gromov hyperbolicity. ACM J. Exp. Algoritm. 20, 1.6:1–1.6:18 (2015)

  9. Cohen, N., Coudert, D., Ducoffe, G., Lancin, A.: Applying clique-decomposition for computing Gromov hyperbolicity. Theor. Comput. Sci. 690, 114–139 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discrete Appl. Math. 3(3), 163–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coudert, D., Ducoffe, G.: Recognition of \(C_4\)-free and 1/2-hyperbolic graphs. SIAM J. Discrete Math. 28(3), 1601–1617 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. In: Proceedings of 29th SODA, pp. 2765–2784. SIAM (2018)

  14. Damaschke, P.: Induced subgraph isomorphism for cographs is NP-complete. In: Proceedings of 16th WG, vol. 484 of LNCS, pp. 72–78. Springer, Berlin (1991)

  15. Doucha, M., Kratochvíl, J.: Cluster vertex deletion: a parameterization between vertex cover and clique-width. In: Proceedings of the 37th MFCS, vol. 7464 of LNCS, pp. 348–359. Springer, Berlin (2012)

  16. Eisenbrand, F., Grandoni, F.: On the complexity of fixed parameter clique and dominating set. Theor. Comput. Sci. 326(1–3), 57–67 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fellows, M., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fournier, H., Ismail, A., Vigneron, A.: Computing the Gromov hyperbolicity of a discrete metric space. Inf. Process. Lett. 115(6–8), 576–579 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman (1979)

  20. Giannopoulou, A.C., Mertzios, G.B., Niedermeier, R.: Polynomial fixed-parameter algorithms: a case study for longest path on interval graphs. Theor. Comput. Sci. 689, 67–95 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gromov, M.: Hyperbolic groups. In: Essays in Group Theory, MSRI Publ., Vol. 8, pp. 75–263. Springer, New York (1987)

  22. Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)

    Article  MATH  Google Scholar 

  23. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Koolen, J.H., Moulton, V.: Hyperbolic bridged graphs. Eur. J. Combin. 23(6), 683–699 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mertzios, G.B., Nichterlein, A., Niedermeier, R.: The power of linear-time data reduction for maximum matching. In: Proceedings of 42nd MFCS, vol. 83 of LIPIcs, pp. 46:1–46:14. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik (2017)

  28. Mitsche, D., Pralat, P.: On the hyperbolicity of random graphs. Electr. J. Combin. 21(2), P2.39 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Upper Saddle River (1982)

    MATH  Google Scholar 

  30. Williams, R., Yu, H.: Finding orthogonal vectors in discrete structures. In: Proceedings of 25th SODA, pp. 1867–1877. SIAM (2014)

  31. Williams, V.V., Wang, J.R., Williams, R., Yu, H.: Finding four-node subgraphs in triangle time. In: Proceedings of the 26th SODA, pp. 1671–1680. SIAM (2015)

Download references

Acknowledgements

We are grateful to the anonymous reviewers of WADS’17 and Algorithmica for their comments. TF acknowledges support by the DFG, Projects DAMM (NI 369/13-2) and TORE (NI 369/18). CK acknowledges support by the DFG, Project MAGZ (KO 3669/4-1). GM acknowledges support by the EPSRC Grant EP/P020372/1. AN acknowledges support by a postdoctoral fellowship of the DAAD while at Durham University. NT acknowledges support by a postdoctoral fellowship from I-CORE ALGO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Till Fluschnik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was initiated at the yearly research retreat of the Algorithmics and Computational Complexity (AKT) group of TU Berlin, held in Krölpa, Thuringia, Germany, from April 3rd till April 9th, 2016. An extended abstract appeared in the Proceedings of the 15th International Symposium on Algorithms and Data Structures (WADS ’17), volume 10389, pages 397–408. Springer, 2017. This version contains additional details and full proofs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fluschnik, T., Komusiewicz, C., Mertzios, G.B. et al. When Can Graph Hyperbolicity be Computed in Linear Time?. Algorithmica 81, 2016–2045 (2019). https://doi.org/10.1007/s00453-018-0522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-0522-6

Keywords

Navigation