Skip to main content
Log in

Myhill–Nerode Methods for Hypergraphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We give an analog of the Myhill–Nerode theorem from formal language theory for hypergraphs and use it to derive the following results for two NP-hard hypergraph problems. (1) We provide an algorithm for testing whether a hypergraph has cutwidth at most \(k\) that runs in linear time for constant \(k\). In terms of parameterized complexity theory, the problem is fixed-parameter linear parameterized by \(k\). (2) We show that it is not expressible in monadic second-order logic whether a hypergraph has bounded (fractional, generalized) hypertree width. The proof leads us to conjecture that, in terms of parameterized complexity theory, these problems are W[1]-hard parameterized by the incidence treewidth (the treewidth of the incidence graph). Thus, in the form of the Myhill–Nerode theorem for hypergraphs, we obtain a method to derive linear-time algorithms and to obtain indicators for intractability for hypergraph problems parameterized by incidence treewidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. For keeping the presentation simpler, we leave graphs with less than \(t\) vertices out of consideration: since we only consider constant values of \(t\) throughout this work, any problem restricted to graphs with less than \(t\) vertices is a finite problem and can therefore be trivially solved by a finite automaton.

  2. The proof of (ii)\({}\rightarrow {}\)(i) given by Downey and Fellows [17] is flawed but repairable [4].

  3. If \(F\) is not generator-total, it might be that \(G\notin F\) but \(\mathcal H(G)\in \mathcal H(F)\) because \(H\in F\) for some \(t\)-boundaried hypergraph generator \(H\ne G\) with \(\mathcal H(G)=\mathcal H(H)\): the graphs \(G\) and \(H\) might represent the hyperedges of \(\mathcal H(G)=\mathcal H(H)\) using different mathematical objects.

References

  1. Abrahamson, K.R., Fellows, M.R.: Cutset Regularity Beats Well-Quasi-Ordering for Bounded Treewidth. Tech. rep., Dept. Computer Science, University Victoria, Canada (1989)

  2. Abrahamson, K.R., Fellows, M.R.: Finite automata, bounded treewidth, and well-quasiordering. In: Graph Structure Theory, American Mathematical Society, Contemporary Mathematics, vol. 147, pp. 539–564 (1991)

  3. Bern, M.W., Lawler, E.L., Wong, A.L.: Why certain subgraph computations require only linear time. In: Proceedings of the 26th FOCS, IEEE Computer Society, pp. 117–125 (1985)

  4. van Bevern, R., Downey, R.G., Fellows, M.R., Gaspers, S., Rosamond, F.A.: Myhill–Nerode Methods for Hypergraphs. arXiv:1211.1299v5 [cs.DM] (2015)

  5. van Bevern, R., Fellows, M.R., Gaspers, S., Rosamond, F.A.: Myhill–Nerode methods for hypergraphs. In: Proceedings of the 24th ISAAC, LNCS, vol. 8283, pp. 372–382. Springer, Berlin (2013)

  6. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bodlaender, H.L., Fellows, M.R., Warnow, T.J.: Two strikes against perfect phylogeny. In: Proceedings of the 19th ICALP, LNCS, vol. 623, pp. 273–283. Springer, Berlin (1992)

  9. Bodlaender, H.L., Fellows, M.R., Hallett, M.T.: Beyond NP-completeness for problems of bounded width (extended abstract): hardness for the W hierarchy. In: Proceedings of the 26th STOC, pp. 449–458. ACM (1994)

  10. Bodlaender, H.L., Fellows, M.R., Hallett, M.T., Wareham, H.T., Warnow, T.J.: The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs. Theor. Comput. Sci. 244(1–2), 167–188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bodlaender, H.L., Fellows, M.R., Thilikos, D.M.: Derivation of algorithms for cutwidth and related graph layout parameters. J. Comput. Syst. Sci. 75(4), 231–244 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Borie, R.B., Parker, R.G., Tovey, C.A.: Solving problems on recursively constructed graphs. ACM Comput. Surv. 41(1) (2009). doi:10.1145/1456650.1456654

  13. Cahoon, J., Sahni, S.: Exact algorithms for special cases of the board permutation problem. In: Proceedings of the 21st Annual Allerton Conference on Communication, Control, and Computing, pp. 246–255 (1983)

  14. Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic—A Language-Theoretic Approach, Encyclopedia of mathematics and Its Applications, vol. 138. Cambridge University Press, Cambridge (2012)

  15. Courcelle, B., Lagergren, J.: Equivalent definitions of recognizability for sets of graphs of bounded tree-width. Math. Struct. Comput. Sci. 6(2), 141–165 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)

    Book  Google Scholar 

  17. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  18. Fellows, M., Langston, M.: An analogue of the Myhill–Nerode theorem and its use in computing finite-basis characterizations. In: Proceedings of the 30th FOCS, pp. 520–525. IEEE Computer Society (1989)

  19. Fellows, M.R., Langston, M.A.: On well-partial-order theory and its application to combinatorial problems of VLSI design. SIAM J. Discrete Math. 5(1), 117–126 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fellows, M.R., Langston, M.A.: On search, decision, and the efficiency of polynomial-time algorithms. J. Comput. Syst. Sci. 49(3), 769–779 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fellows, M.R., Jansen, B.M.P., Rosamond, F.: Towards fully multivariate algorithmics: parameter ecology and the deconstruction of computational complexity. Eur. J. Combin. 34(3), 541–566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    Google Scholar 

  23. Fomin, F.V., Golovach, P.A., Thilikos, D.M.: Approximating acyclicity parameters of sparse hypergraphs. In: Proceedings of the 26th STACS, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, LIPIcs, vol. 3, pp. 445–456 (2009)

  24. Ganian, R., Hliněný, P.: On parse trees and Myhill–Nerode-type tools for handling graphs of bounded rank-width. Discrete Appl. Math. 158(7), 851–867 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Garey, M.R., Graham, R.L., Johnson, D.S., Knuth, D.E.: Complexity results for bandwidth minimization. SIAM J. Appl. Math. 34(3), 477–495 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gaspers, S., Naroditskiy, V., Narodytska, N., Walsh, T.: Possible and necessary winner problem in social polls. In: Proceedings of the AAMAS’13, IFAAMAS, pp. 1131–1132 (2013)

  27. Gavril, F.: Some NP-complete problems on graphs. In: Proceedings of the 1977 Conference on Information Science and Systems, Johns Hopkins University, pp. 91–95 (1977)

  28. Gottlob, G., Grohe, M., Musliu, N., Samer, M., Scarcello, F.: Hypertree decompositions: structure, algorithms, and applications. In: Proceedings of the 31st WG, LNCS, vol. 3787, pp. 1–15. Springer, Berlin (2005)

  29. Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions: NP-hardness and tractable variants. J. ACM 56(6) (2009). doi:10.1145/1568318.1568320

  30. Hliněný, P.: Branch-width, parse trees, and monadic second-order logic for matroids. J. Comb. Theory B 96(3), 325–351 (2006)

    Article  MATH  Google Scholar 

  31. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. J. Comput. Sci. 61(2), 302–332 (2000)

    MathSciNet  MATH  Google Scholar 

  32. Komusiewicz, C., Niedermeier, R.: New races in parameterized algorithmics. In: Proceedings of the 37th MFCS, LNCS, vol. 7464, pp. 19–30. Springer, Berlin (2012)

  33. Lagergren, J., Arnborg, S.: Finding minimal forbidden minors using a finite congruence. In: Proceedings of the 18th ICALP, LCNS, vol. 510, pp. 532–543. Springer, Berlin (1991)

  34. Lakshmipathy, N., Winklmann, K.: “Global” graph problems tend to be intractable. J. Comput. Syst. Sci. 32(3), 407–428 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mahajan, S., Peters, J.G.: Regularity and locality in \(k\)-terminal graphs. Discrete Appl. Math. 54(2–3), 229–250 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Marx, D.: Approximating fractional hypertree width. ACM Trans Algorithms 6(2), 29 (2010)

    Article  MathSciNet  Google Scholar 

  37. Miller, Z., Sudborough, I.H.: A polynomial algorithm for recognizing bounded cutwidth in hypergraphs. Math. Syst. Theory 24(1), 11–40 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  38. Myhill, J.: Finite Automata and Representation of Events. Tech. Rep. WADD TR-57-624, Wright-Patterson Air Force Base, Ohio, USA (1957)

  39. Nagamochi, H.: Linear layouts in submodular systems. In: Proceedings of the 23rd ISAAC, LNCS, vol. 7676, pp. 475–484. Springer, Berlin (2012)

  40. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–544 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  41. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  42. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proceedings of the 27th STACS, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, LIPIcs, vol. 5, pp. 17–32 (2010)

  43. Prasad, M.R., Chong, P., Keutzer, K.: Why is ATPG easy? In: Proceedings of the 36th DAC, pp. 22–28. ACM (1999)

  44. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. Comput. Sci. 76(2), 103–114 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Thilikos, D.M., Serna, M.J., Bodlaender, H.L.: Cutwidth I: a linear time fixed parameter algorithm. J. Algorithms 56(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, D., Clarke, E., Zhu, Y., Kukula, J.: Using cutwidth to improve symbolic simulation and Boolean satisfiability. In: Proceedings of the 6th HLDVT, pp. 165–170. IEEE (2001)

  47. Wimer, T.V.: Linear Algorithms on \(k\)-Terminal Graphs. PhD thesis, Clemson University (1987)

  48. Wimer, T.V., Hedetniemi, S.T., Laskar, R.: A methodology for constructing linear graph algorithms. Congr. Numer. 50, 43–60 (1985)

    MathSciNet  Google Scholar 

  49. Yao, A.C.: Some complexity questions related to distributed computing. In: Proceedings of the 11th STOC, pp. 209–213. ACM (1979)

Download references

Acknowledgments

The authors are thankful to Mahdi Parsa for fruitful discussions. René van Bevern acknowledges support by the Deutsche Forschungsgesellschaft (DFG), Project DAPA (NI 369/12). Rod Downey acknowleges support by a grant from the New Zealand Marsden Fund. The remaining three authors acknowledge support by the Australian Research Council, Grants DP 1097129 (Michael R. Fellows), DE 120101761 (Serge Gaspers), and DP 110101792 (Michael R. Fellows and Frances A. Rosamond). NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René van Bevern.

Additional information

A preliminary version of this article appeared in the proceedings of ISAAC 2013 [5]. This extended and revised version contains the full proof details, more figures, and corollaries to make the application of the Myhill–Nerode theorem for hypergraphs easier in an algorithmic setting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Bevern, R., Downey, R.G., Fellows, M.R. et al. Myhill–Nerode Methods for Hypergraphs. Algorithmica 73, 696–729 (2015). https://doi.org/10.1007/s00453-015-9977-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-015-9977-x

Keywords

Navigation