Skip to main content
Log in

New Approximability Results for Two-Dimensional Bin Packing

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the two-dimensional bin packing problem: Given a list of \(n\) rectangles the objective is to find a feasible, i.e. axis-parallel and non-overlapping, packing of all rectangles into the minimum number of unit sized squares, also called bins. Our problem consists of two versions; in the first version it is not allowed to rotate the rectangles while in the other it is allowed to rotate the rectangles by \(90^{\circ }\), i.e. to exchange the widths and the heights. Two-dimensional bin packing is a generalization of its one-dimensional counterpart and is therefore strongly \(\mathcal {NP}\)-hard. Furthermore Bansal et al. (Math Oper Res 31(1):31–49, 2006) showed that even an \(\mathcal {APTAS}\) is ruled out for this problem, unless \(\mathcal {P}=\mathcal {NP}\). This lower bound of asymptotic approximability was improved by Chlebík and Chlebíková (J Discrete Algorithms 7(3):291–305, 2009) to values \(1+1/3792\) and \(1+1/2196\) for the version with and without rotations, respectively. On the positive side there is an asymptotic 1.69.. approximation by Caprara (Math Oper Res 33:203–215, 2008) without rotations and an asymptotic 1.52... approximation by Bansal et al. (SIAM J Comput 39(4):1256–1278, 2009) for both versions. We give a new asymptotic upper bound for both versions of our problem: For any fixed \(\varepsilon \) and any instance that fits optimally into \(\mathrm {OPT}\) bins, our algorithm computes a packing into \((3/2+\varepsilon )\cdot \mathrm {OPT}+69\) bins in the version without rotations and \((3/2+\varepsilon )\cdot \mathrm {OPT}+39\) bins in the version with rotations. The algorithm has polynomial running time in the input length. In our new technique we consider an optimal packing of the rectangles into the bins. We cut a small vertical or horizontal strip out of each bin and move the intersecting rectangles into additional bins. This enables us to either round the widths of all wide rectangles, or the heights of all long rectangles in this bin. After this step we round the other unrounded side of these rectangles and we achieve a solution with a simple structure and only few types of rectangles. Our algorithm initially rounds the instance and computes a solution that nearly matches the modified optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Bansal, N., Caprara, A., Sviridenko, M.: A new approximation method for set covering problems, with applications to multidimensional bin packing. SIAM J. Comput. 39(4), 1256–1278 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimensions: inapproximability results and approximation schemes. Math. Oper. Res. 31(1), 31–49 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bansal, N., Khan, A.: Improved approximation algorithm for two-dimensional bin packing. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), pp. 13–25 (2014)

  4. Bougeret, M., Dutot, P.-F., Jansen, K., Robenek, C., Trystram, D.: Approximation algorithms for multiple strip packing and scheduling parallel jobs in platforms. Discret. Math. Algorithms Appl. 3(4), 553–586 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caprara, A.: Packing d-dimensional bins in d stages. Math. Oper. Res. 33, 203–215 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chlebík, M., Chlebíková, J.: Hardness of approximation for orthogonal rectangle packing and covering problems. J. Discrete Algorithms 7(3), 291–305 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chung, F.R.K., Garey, M.R., Johnson, D.S.: On packing two-dimensional bins. SIAM J. Algebr. Discret. Methods 3, 66–76 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Coffman Jr, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-oriented two-dimensional packing algorithms. SIAM J. Comput. 9(4), 808–826 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dinic, E.A.: An algorithm for solution of a problem of maximum flow in a network with power estimation. Sov. Math. Dokl. 11(5), 1277–1280 (1970)

    Google Scholar 

  10. Eisenbrand, F., Shmonin, G.: Carathéodory bounds for integer cones. Oper. Res. Lett. 34(5), 564–568 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within \(1 + \epsilon \) in linear time. Combinatorica 1(4), 349–355 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grigoriadis, M.D., Khachiyan, L.G., Porkolab, L., Villavicencio, J.: Approximate max–min resource sharing for structured concave optimization. SIAM J. Optim. 11(4), 1081–1091 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Harren, R., van Stee, R.: Absolute approximation ratios for packing rectangles into bins. J. Sched. 15(1), 63–75 (2012)

  14. Harren, R., van Stee, R.: Improved absolute approximation ratios for two-dimensional packing problems. In: Proceedings of the 12th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2009), LNCS 5687, pp. 177–189 (2009)

  15. Jansen, K.: Efficient Approximation and Online Algorithms, chapter Approximation Algorithms for min–max and max–min Resource Sharing Problems and Applications, LNCS 3484, pp. 156–202. Springer, Berlin (2006)

  16. Jansen, K., Prädel, L.: A new asymptotic approximation algorithm for 3-dimensional strip packing. In: Theory and Practice of Computer Science—40th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2014), LNCS 8327, pp. 327–338 (2014)

  17. Jansen, K., Prädel, L., Schwarz, U. M.: Two for one: Tight approximation of 2d bin packing. In: Proceedings of the 11th International Symposium on Algorithms and Data Structures (WADS 2009), LNCS 5664, pp. 399–410 (2009)

  18. Jansen, K., Solis-Oba, R.: Rectangle packing with one-dimensional resource augmentation. Discret. Optim. 6(3), 310–323 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jansen, K., van Stee, R.: On strip packing with rotations. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing (STOC 2005), pp. 755–761 (2005)

  20. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kenyon, C., Rémila, E.: A near-optimal solution to a two-dimensional cutting stock problem. Math. Oper. Res. 25(4), 645–656 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lawler, E.L.: Fast approximation algorithms for knapsack problems. Math. Oper. Res. 4, 339–356 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  23. Leung, J.Y.-T., Tam, T.W., Wong, C.S., Young, G.H., Chin, F.Y.L.: Packing squares into a square. J. Parallel Distrib. Comput. 10(3), 271–275 (1990)

    Article  MathSciNet  Google Scholar 

  24. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput. 26(2), 401–409 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vaidya, P.M.: An algorithm for linear programming which requires \({\cal O}(((m+n)n^{2} + (m+n)^{1.5}n) L )\) arithmetic operations. Math. Program. 47, 175–201 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang, G.: A 3-approximation algorithm for two-dimensional bin packing. Oper. Res. Lett. 33(2), 121–126 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Prädel.

Additional information

Research supported by German Research Foundation (DFG) Project JA612/12-2, “Approximation algorithms for two- and three-dimensional packing problems and related scheduling problems”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansen, K., Prädel, L. New Approximability Results for Two-Dimensional Bin Packing. Algorithmica 74, 208–269 (2016). https://doi.org/10.1007/s00453-014-9943-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9943-z

Keywords

Navigation