Skip to main content

Advertisement

Log in

Isolation, biosynthesis and antimicrobial activity of gold nanoparticles produced with extracts of Anabaena spiroides

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Multidrug-resistant (MDR) pathogenic bacteria have become dangerous in bringing sporadic outbreaks in public health and nosocomial spreads from the addition of antibacterials/antibiotics continually. Obviously, the pharmacy world is in search of antibacterials that would be invincible by the evolved bacteria. Green synthesis of gold-nanoparticles (AuNps) was focused on the use of aqueous chloroauric acid (HAuCl4) and cell-free aqueous extract of the N2-fixing cyanobacterium (blue-green alga) Anabaena spiroides collected from a brackish-water, Bay of Bengal at Puri, Odisha; green-synthesized AuNps could be used as antibacterials against MDR bacteria. The synthesized AuNps were subjected to the following characterizations, UV–Vis spectrophotometry, SEM–EDX, XRD and ART-FTIR analysis. An absorption peak at 538 nm by UV–Vis spectrophotometry and the FTIR analysis confirmed the presence of AuNps. A. spiroides-AuNps were monitored for antibacterial activities against MDR pathogenic bacterial strains isolated from clinical samples, namely, Klebsiella oxytoca, MRSA and Streptococcus pyogenes, in vitro; the individual antibiograms of those bacteria were known. The recorded MIC dose values were 25, 20 and 30 mg A. spiroides-AuNps (As-AuNps) against K. oxytoca, MRSA and S. pyogenes, in vitro, respectively. Thus, As-AuNps bear promises as possible antibacterials, in future.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kundu A, Lee J, Park B, Ray C, Sankar KV, Kim WS, Lee SH, Cho IJ, Jun SC (2018) Facile approach to synthesize highly fluorescent multicolor emissive carbon dots via surface functionalization for cellular imaging. J Colloid Interface Sci 513:505–514. https://doi.org/10.1016/j.jcis.2017.10.095

    Article  CAS  PubMed  Google Scholar 

  2. Famuyiwa TO, Kumi-Diaka JK (2018) Nanoparticle (NP) delivery of chemotherapy drugs to prostate cancer patients. J Cancer Prev Curr Res 9(5):218–220. https://doi.org/10.15406/jcpcr.2018.09.00354

    Article  Google Scholar 

  3. Nag OK, Delehanty JB (2019) Active cellular and subcellular targeting of nanoparticles for drug delivery. Pharmaceutics 11(10):543

    Article  CAS  PubMed Central  Google Scholar 

  4. Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM (2017) Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem 10:3029–3039. https://doi.org/10.1016/j.arabjc.2013.11.044

    Article  CAS  Google Scholar 

  5. Mishra MP, Padhy RN (2018) Antibacterial activity of green silver nanoparticles synthesized from Anogeissus acuminata against multidrug resistant urinary tract infecting bacteria in vitro and host-toxicity testing. J Appl Biomed 16(2):120–125. https://doi.org/10.1016/j.jab.2017.11.003

    Article  Google Scholar 

  6. AlMatar M, Makky EA, Var I, Koksal F (2017) The role of nanoparticles in the inhibition of multidrug-resistant bacteria and biofilms. Curr Drug Deliv 15(4):470–484. https://doi.org/10.2174/1567201815666171207163504

    Article  CAS  Google Scholar 

  7. Liu R, Pei Q, Shou T, Zhang W, Hu J, Li W (2019) Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma a498 cells. Int J Nanomedicine 14:4091. https://doi.org/10.2147/IJN.S203222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vijayan R, Joseph S, Mathew B (2019) Anticancer, antimicrobial, antioxidant, and catalytic activities of green-synthesized silver and gold nanoparticles using Bauhinia purpurea leaf extract. Bioprocess Biosyst Eng 42(2):305–319. https://doi.org/10.1007/s00449-018-2035-8

    Article  CAS  PubMed  Google Scholar 

  9. Santhoshkumar J, Rajeshkumar S, Venkat Kumar S (2017) Phyto-assisted synthesis, characterization and applications of gold nanoparticles—a review. Biochem Biophys Reports 1:46–57

    Article  Google Scholar 

  10. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1–4):132–140. https://doi.org/10.1016/j.hydromet.2006.03.019

    Article  CAS  Google Scholar 

  11. Singh P, Kim YJ, Zhang D, Yang DC (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599

    Article  CAS  PubMed  Google Scholar 

  12. Gahlawat G, Choudhury AR (2019) A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv 9(23):12944–12967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rajan A, Vilas V, Philip D (2015) Studies on catalytic, antioxidant, antibacterial and anticancer activities of biogenic gold nanoparticles. J Mol Liq 212:331–339. https://doi.org/10.1016/j.molliq.2015.09.013

    Article  CAS  Google Scholar 

  14. Versiani AF, Andrade LM, Martins EM, Scalzo S, Geraldo JM, Chaves CR, Ferreira DC, Ladeira M, Guatimosim S, Ladeira LO, da Fonseca FG (2016) Gold nanoparticles and their applications in biomedicine. Future Virol 11(4):293–309

    Article  CAS  Google Scholar 

  15. Chandran K, Song S, Il YS (2019) Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. Arab J Chem 12(8):1994–2006. https://doi.org/10.1016/j.arabjc.2014.11.041

    Article  CAS  Google Scholar 

  16. Camas M, Celik F, Sazak Camas A, Ozalp HB (2019) Biosynthesis of gold nanoparticles using marine bacteria and Box-Behnken design optimization. Part Sci Technol 37(1):31–38. https://doi.org/10.1080/02726351.2017.1287794

    Article  CAS  Google Scholar 

  17. Clarance P, Luvankar B, Sales J, Khusro A, Agastian P, Tack JC, Al KhulaifiAL-ShwaimanElgorbanSyedKim MMHAAMAHJ (2020) Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J Biol Sci 27(2):706–712. https://doi.org/10.1016/j.sjbs.2019.12.026

    Article  CAS  PubMed  Google Scholar 

  18. Senthilkumar P, Surendran L, Sudhagar B, Ranjith Santhosh Kumar DS (2019) Facile green synthesis of gold nanoparticles from marine algae Gelidiella acerosa and evaluation of its biological Potential. SN Appl Sci 1(4):284. https://doi.org/10.1007/s42452-019-0284-z

    Article  CAS  Google Scholar 

  19. Lengke MF, Sanpawanitchakit C, Southam G (2011) Biosynthesis of gold nanoparticles: a review. In: Rai M, Duran N (eds) Metal nanoparticles in microbiology. Springer, Berlin, pp 37–74. https://doi.org/10.1007/978-3-642-18312-6

  20. Karimi S, Moshaii A, Abbasian S, Nikkhah M (2019) Surface plasmon resonance in small gold nanoparticles: introducing a size-dependent plasma frequency for nanoparticles in quantum regime. Plasmonics 14(4):851–860. https://doi.org/10.1007/s11468-018-0866-4

    Article  CAS  Google Scholar 

  21. Li X, Robinson SM, Gupta A, Saha K, Jiang Z, Moyano DF, Sahar A, Riley MA, Rotello VM (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8(10):10682–10686. https://doi.org/10.1021/nn5042625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raghavendra R, Arunachalam K, Annamalai SK, Arunachalam AM (2014) Diagnostics and therapeutic application of Gold nanoparticles. Int J Pharm Pharm Sci 2:4

    Google Scholar 

  23. Kumar P, Roy I (2016) Applications of gold nanoparticles in clinical medicine. Int J Pharm Pharm Sci 8(7):11–16

    Google Scholar 

  24. Bartelt DA (2014) Antibiotic-resistant pathogens: a future at risk. Nurse Pract 39(8):19–21. https://doi.org/10.1097/01.NPR.0000451910.48050.1b

    Article  PubMed  Google Scholar 

  25. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! an update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–2. https://doi.org/10.1086/595011

    Article  PubMed  Google Scholar 

  26. Kardos N (2017) Overuse of antibiotics and antibiotic resistance in medical applications featuring carbapenemase resistant enterobacteriaceae (CRE). SOJ Microbiol Infect Dis 5(5):1–21. https://doi.org/10.15226/sojmid/5/5/00183

    Article  CAS  Google Scholar 

  27. Dahoumane SA, Djediat C, Yéprémian C, Couté A, Fiévet F, Coradin T, Brayner R (2012) Species selection for the design of gold nanobioreactor by photosynthetic organisms. J Nanopart Res 14(6):883. https://doi.org/10.1007/s11051-012-0883-8

    Article  CAS  Google Scholar 

  28. Dahoumane SA, Mechouet M, Alvarez FJ, Agathos SN, Jeffryes C (2016) Microalgae: An outstanding tool in nanotechnology. Rev Bionat 1(4):196–201

    Google Scholar 

  29. Rösken LM, Cappel F, Körsten S, Fischer CB, Schönleber A, van Smaalen S, Geimer S, Beresko C, Ankerhold G, Wehner S (2016) Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica. Beilstein J Nanotechnol 7(1):312–327. https://doi.org/10.3762/bjnano.7.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roychoudhury P, Bhattacharya A, Dasgupta A, Pal R (2016) Biogenic synthesis of gold nanoparticle using fractioned cellular components from eukaryotic algae and cyanobacteria. Phycol Res 64(3):133–140. https://doi.org/10.1111/pre.12127

    Article  CAS  Google Scholar 

  31. Rösken LM, Körsten S, Fischer CB, Schönleber A, van Smaalen S, Geimer S, Wehner S (2014) Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 1 Anabaena sp. J Nanoparticle Res 16(4):2370. https://doi.org/10.1007/s11051-014-2370-x

    Article  CAS  Google Scholar 

  32. Lenartowicz M, Marek PH, Madura ID, Lipok J (2017) Formation of Variously Shaped Gold Nanoparticles by Anabaena laxa. J Clust Sci 28(5):3035–3055. https://doi.org/10.1007/s10876-017-1275-0

    Article  CAS  Google Scholar 

  33. Dubey D, Padhy RN (2013) Antibacterial activity of Lantana camara L. against multidrug resistant pathogens from ICU patients of a teaching hospital. J Herb Med 3(2):65–75. https://doi.org/10.1016/j.hermed.2012.12.002

    Article  Google Scholar 

  34. Rath S, Padhy RN (2014) Prevalence of two multidrug-resistant Klebsiella species in an Indian teaching hospital and adjoining community. J Infect Public Health 7(6):496–507. https://doi.org/10.1016/j.jiph.2014.05.002

    Article  PubMed  Google Scholar 

  35. Sahoo CR, Maharana S, Mandhata CP, Bishoyi AK, Paidesetty SK, Padhy RN (2020) Biogenic silver nanoparticle synthesis with cyanobacterium Chroococcus minutus isolated from Baliharachandi sea-mouth, Odisha, and in vitro antibacterial activity. Saudi J Biol Sci 27:1580–1586. https://doi.org/10.1016/j.sjbs.2020.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sahoo CR, Paidesetty SK, Dehury B, Padhy RN (2019) Molecular dynamics and computational study of Mannich-based coumarin derivatives: potent tyrosine kinase inhibitor. J Biomol Struct Dyn 16:1–10. https://doi.org/10.1080/07391102.2019.1701554

    Article  CAS  Google Scholar 

  37. Sahoo CR, Patro R, Sahoo J, Padhy RNPSK (2019) Design, molecular docking of synthesized schiff-based thiazole/pyridine derivatives as potent antibacterial inhibitor. Indian Drugs 56(11):20–25

    Google Scholar 

  38. Matsunaga S, Moore RE, Niemczura WP, Carmichael WW (1989) Anatoxin-a(s), a Potent Anticholinesterase from Anabaena flos-aquae. J Am Chem Soc 111(20):8021–8023. https://doi.org/10.1021/ja00202a057

    Article  CAS  Google Scholar 

  39. Berry JP, Gantar M, Perez MH, Berry G, Noriega FG (2008) Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides. Mar Drugs 6(2):117–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ma L, Led JJ (2000) Determination by high field NMR spectroscopy of the longitudinal electron relaxation rate in Cu(II) plastocyanin from Anabaena variabilis. J Am Chem Soc 122(32):7823–7824

    Article  CAS  Google Scholar 

  41. Frankmolle WP, Knubel G, Moore RE, Patterson GML (1992) Antifungal cyclic peptides from the terrestrial blue-green alga Anabaena laxa II. Structures of laxaphycins a, b, d and e. J Antibiot (Tokyo) 45(9):1451–1457. https://doi.org/10.7164/antibiotics.45.1458

    Article  CAS  Google Scholar 

  42. Singh R, Parihar P, Singh M, Bajguz A, Kumar J, Singh S, Singh VP, Prasad SM (2017) Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: Current status and future prospects. Front Microbiol 8:515

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brayner R, Barberousse H, Hemadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7(8):2696–2708. https://doi.org/10.1166/jnn.2007.600

    Article  CAS  PubMed  Google Scholar 

  44. Baptista MS, Vasconcelos MT (2006) Cyanobacteria metal interactions: Requirements, toxicity, and ecological implications. Crit Rev Microbiol 32(3):127–137

    Article  CAS  PubMed  Google Scholar 

  45. El-Naggar ME, Shaheen TI, Fouda MMG, Hebeish AA (2016) Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles. Carbohydr Polym 136:1128–1136. https://doi.org/10.1016/j.carbpol.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  46. Hamza W, Abouelkheir S, Taha H, Diab T (2018) Spirulina platensis gold nanoparticles (AuNPs) and its activity against cancer cell lines and as antioxidant agents. Egypt J Exp Biol 14(2):385–391. https://doi.org/10.5455/egyjebb.20181217085315

    Article  Google Scholar 

  47. Annamalai J, Nallamuthu T (2015) Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl Nanosci 5(5):603–607. https://doi.org/10.1007/s13204-014-0353-y

    Article  CAS  Google Scholar 

  48. Zada S, Ahmad A, Khan S, Yu X, Chang K, Iqbal A, Ahmad A, Ullah S, Raza M, Khan A, Ahmad S (2018) Biogenic synthesis of silver nanoparticles using extracts of Leptolyngbya JSC-1 that induce apoptosis in HeLa cell line and exterminate pathogenic bacteria. Artif Cells Nanomed Biotechnol 46(3):471–480. https://doi.org/10.1080/21691401.2018.1499663

    Article  CAS  Google Scholar 

  49. Dhas TS, Kumar VG, Karthick V, Vasanth K, Singaravelu G, Govindaraju K (2016) Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. Enzyme Microb Technol 95:100–106. https://doi.org/10.1016/j.enzmictec.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  50. Aravindhan R, Madhan B, Rao JR, Nair BU, Ramasami T (2004) Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse. Environ Sci Technol 38(1):300–306. https://doi.org/10.1021/es034427s

    Article  CAS  PubMed  Google Scholar 

  51. Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34(5):615–619. https://doi.org/10.1007/s00449-010-0510-y

    Article  CAS  PubMed  Google Scholar 

  52. Dananjaya SH, Thao NT, Wijerathna HM, Lee J, Edussuriya M, Choi D, Kumar RS (2020) In vitro and in vivo anticandidal efficacy of green synthesized gold nanoparticles using Spirulina maxima polysaccharide. Process Biochem 92(2020):138–148. https://doi.org/10.1016/j.procbio.2020.03.003

    Article  CAS  Google Scholar 

  53. Elsome AM, Hamilton-Miller JMT, Brumfitt W, Noble WC (1996) Antimicrobial activities in vitro and in vivo of transition element complexes containing gold(I) and osmium(VI). J Antimicrob Chemother 37(5):911–918. https://doi.org/10.1093/jac/37.5.911

    Article  CAS  PubMed  Google Scholar 

  54. Ozdemir C, Yeni F, Odaci D, Timur S (2010) Electrochemical glucose biosensing by pyranose oxidase immobilized in gold nanoparticle-polyaniline/AgCl/gelatin nanocomposite matrix. Food Chem 119(1):380–385. https://doi.org/10.1016/j.foodchem.2009.05.087

    Article  CAS  Google Scholar 

  55. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586. https://doi.org/10.1021/ar7002804

    Article  CAS  PubMed  Google Scholar 

  56. Bakir EM, Younis NS, Mohamed ME, El Semary NA (2018) Cyanobacteria as nanogold factories: Chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by Lyngbya majuscula. Mar Drugs 16(6):217. https://doi.org/10.3390/md16060217

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the School of Pharmaceutical Sciences and Institute of Technical Education and Research of SOADU for necessary facilities. Authors are thankful to Central Instrumental Facility Center of Orissa University Agriculture and Technology, Bhubaneswar and to SRM-DBT Platform for Advanced Life Science Technologies, SRM Institute of Science and Technology, Kattankulathur, TN, for work with molecular taxonomy. We are grateful to Dean, IMS & SUM Hospital for their encouragements.

Funding

This work was supported by a Ph.D. fellowship (Regd. No.1981611007/2019) to CP Mandhata by Siksha O Anusandhan Deemed to be University (SOADU), Bhubaneswar, Odisha.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabindra Nath Padhy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandhata, C.P., Sahoo, C.R., Mahanta, C.S. et al. Isolation, biosynthesis and antimicrobial activity of gold nanoparticles produced with extracts of Anabaena spiroides. Bioprocess Biosyst Eng 44, 1617–1626 (2021). https://doi.org/10.1007/s00449-021-02544-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02544-4

Keywords

Navigation