Skip to main content
Log in

Biogenic preparation and characterization of Pyropia yezoensis silver nanoparticles (P.y AgNPs) and their antibacterial activity against Pseudomonas aeruginosa

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Marine algae play key roles in several medical, pharmaceutical, agricultural, and aquacultural applications. Furthermore, biosynthesized nanomaterials are becoming an alternative to conventional antibiotics in cost-effective, biocompatible, and non-toxic treatments for bacterial infections. This study features biogenic synthesis of silver nanoparticles using an aqueous extract of the marine red algae Pyropia yezoensis. The formation of silver nanoparticles was initially confirmed by UV–Vis spectroscopy and FTIR spectra were used to identify functional groups. The average crystalline size of the silver nanoparticles was around 20–22 nm, as determined by XRD analysis. Particle size was confirmed by SEM and TEM analyses, which also showed spherical particles without agglomeration. The antibacterial properties of the nanoparticles were assessed against both Gram-positive and Gram-negative bacterial cultures with significant activity observed against Gram negative P. aeruginosa. Our Pyropia yezoensis silver nanoparticles (P.y AgNPs) reduced the growth of P. aeruginosa at concentrations of 200 and 400 µg/ml. Our results strongly imply that P.y AgNPs may be useful in treating bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sandreschi S, Piras AM, Batoni G, Chiellini F (2016) Perspectives on polymeric nanostructures for the therapeutic application of antimicrobial peptides. Nanomedicine 11:1729–1744. https://doi.org/10.2217/nnm-2016-0057

    Article  CAS  PubMed  Google Scholar 

  2. Kiristi M, Singh VV, Avila D et al (2015) Lysozyme-based antibacterial nanomotors. ACS Nano 22:9252–9259. https://doi.org/10.1021/acsnano.5b04142

    Article  CAS  Google Scholar 

  3. Aslam B, Wang W, Arshad MI et al (2018) Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 11:1645–1658. https://doi.org/10.2147/IDR.S173867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. DeLeon S, Clinton A, Fowler H et al (2014) Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an In vitro wound model. Infect Immun 82:4718–4728. https://doi.org/10.1128/IAI.02198-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neethirajan S, Clond MA, Vogt A (2014) Medical biofilms—nanotechnology approaches. J Biomed Nanotechnol 10:2806–2827. https://doi.org/10.1166/jbn.2014.1892

    Article  CAS  PubMed  Google Scholar 

  6. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles present situation and prospects for the future. Int J Nanomed 12:1227–1249. https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  7. Ramasamy M, Lee J (2016) Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int. https://doi.org/10.1155/2016/1851242

    Article  PubMed  PubMed Central  Google Scholar 

  8. Khan F, Khan MM, Kim Y-M (2018) Recent progress and future perspectives of antibiofilm drugs immobilized on nanomaterials. Curr Pharm Biotechnol 19:631–643. https://doi.org/10.2174/1389201019666180828090052

    Article  CAS  PubMed  Google Scholar 

  9. Javaid A, Oloketuyi SF, Khan MM, Khan F (2018) Diversity of bacterial synthesis of silver nanoparticles. Bionanoscience 8:43–59. https://doi.org/10.1007/s12668-017-0496-x

    Article  Google Scholar 

  10. Dizaj SM, Mennati A, Jafari S et al (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5:19–23. https://doi.org/10.5681/apb.2015.003

    Article  CAS  Google Scholar 

  11. Fayaz AM, Balaji K, Girilal M et al (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6:103–109. https://doi.org/10.1016/j.nano.2009.04.006

    Article  CAS  Google Scholar 

  12. Zhou Y, Kong Y, Kundu S et al (2012) Antibacterial activities of gold and silver nanoparticles against Escherichia coli and bacillus Calmette-Guérin. J Nanobiotechnol 10:1–9. https://doi.org/10.1186/1477-3155-10-19

    Article  CAS  Google Scholar 

  13. Ren G, Hu D, Cheng EWC et al (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590. https://doi.org/10.1016/j.ijantimicag.2008.12.004

    Article  CAS  PubMed  Google Scholar 

  14. Xie Y, He Y, Irwin PL et al (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331. https://doi.org/10.1128/AEM.02149-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kubacka A, Diez MS, Rojo D et al (2014) Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep 4:1–9. https://doi.org/10.1038/srep04134

    Article  CAS  Google Scholar 

  16. Raafat D, Von Bargen K, Haas A, Sahl HG (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74:3764–3773. https://doi.org/10.1128/AEM.02290-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang L, Yan W, Wang H et al (2017) Shell thickness-dependent antibacterial activity and biocompatibility of gold@silver core-shell nanoparticles. RSC Adv 7:11355–11361. https://doi.org/10.1039/c7ra00485k

    Article  CAS  Google Scholar 

  18. Rónavári A, Kovács D, Igaz N et al (2017) Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study. Int J Nanomedicine 12:871–883. https://doi.org/10.2147/IJN.S122842

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ramesh AV, Devi DR, Battu GR, Basavaiah K (2018) A facile plant mediated synthesis of silver nanoparticles using an aqueous leaf extract of Ficus hispida Linn. f. for catalytic, antioxidant and antibacterial applications. S Afr J Chem Eng 26:25–34. https://doi.org/10.1016/j.sajce.2018.07.001

    Article  Google Scholar 

  20. Jacob JA, Shanmugam A (2015) Silver nanoparticles provoke apoptosis of Dalton’s ascites lymphoma in vivo by mitochondria dependent and independent pathways. Colloids Surf B Biointerfaces 136:1011–1016. https://doi.org/10.1016/j.colsurfb.2015.11.004

    Article  CAS  PubMed  Google Scholar 

  21. Zhang H, Jacob JA, Jiang Z et al (2019) Hepatoprotective effect of silver nanoparticles synthesized using aqueous leaf extract of Rhizophora apiculata. Int J Nanomedicine 14:3517–3524. https://doi.org/10.2147/IJN.S198895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ovais M, Khalil AT, Ayaz M et al (2018) Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci 19:1–20. https://doi.org/10.3390/ijms19124100

    Article  Google Scholar 

  23. Saravanan C, Rajesh R, Kaviarasan T et al (2017) Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Reports 15:33–40. https://doi.org/10.1016/j.btre.2017.02.006

    Article  Google Scholar 

  24. Fang X, Wang Y, Wang Z et al (2019) Microorganism assisted synthesized nanoparticles for catalytic applications. Energies. https://doi.org/10.3390/en12010190

    Article  Google Scholar 

  25. Talekar S, Joshi A, Chougle R et al (2016) Immobilized enzyme mediated synthesis of silver nanoparticles using cross-linked enzyme aggregates (CLEAs) of NADH-dependent nitrate reductase. Nano-Struct Nano-Object 6:23–33. https://doi.org/10.1016/j.nanoso.2016.03.002

    Article  CAS  Google Scholar 

  26. Khanna P, Kaur A, Goyal D (2019) Algae-based metallic nanoparticles: synthesis, characterization and applications. J Microbiol Methods 163:105656. https://doi.org/10.1016/j.mimet.2019.105656

    Article  CAS  PubMed  Google Scholar 

  27. Bilal M, Rasheed T, Sosa-Hernández JE et al (2018) Biosorption: an interplay between marine algae and potentially toxic elements—a review. Mar Drugs 16:1–16. https://doi.org/10.3390/md16020065

    Article  CAS  Google Scholar 

  28. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597. https://doi.org/10.1007/s10811-010-9632-5

    Article  CAS  Google Scholar 

  29. Govindaraju K, Basha SK, Kumar VG, Singaravelu G (2008) Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43:5115–5122. https://doi.org/10.1007/s10853-008-2745-4

    Article  CAS  Google Scholar 

  30. Govindaraju K, Kiruthiga V, Kumar VG, Singaravelu G (2009) Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii greville and their antibacterial effects. J Nanosci Nanotechnol 9:5497–5501. https://doi.org/10.1166/jnn.2009.1199

    Article  CAS  PubMed  Google Scholar 

  31. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496. https://doi.org/10.1093/ajcp/45.4_ts.493

    Article  CAS  PubMed  Google Scholar 

  32. Khan F, Lee J-W, Manivasagan P et al (2019) Synthesis and characterization of chitosan oligosaccharide-capped gold nanoparticles as an effective antibiofilm drug against the Pseudomonas aeruginosa PAO1. Microb Pathog 135:103623. https://doi.org/10.1016/j.micpath.2019.103623

    Article  CAS  PubMed  Google Scholar 

  33. Khan F, Manivasagan P, Lee J-W et al (2019) Fucoidan-stabilized gold nanoparticle-mediated biofilm inhibition, attenuation of virulence and motility properties in pseudomonas aeruginosa PAO1. Mar Drugs. https://doi.org/10.3390/md17040208

    Article  PubMed  PubMed Central  Google Scholar 

  34. Khan F, Manivasagan P, Pham DTN et al (2019) Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microb Pathog 128:363–373. https://doi.org/10.1016/j.micpath.2019.01.033

    Article  CAS  PubMed  Google Scholar 

  35. Philip D, Unni C, Aromal SA, Vidhu VK (2011) Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 78:899–904. https://doi.org/10.1016/j.saa.2010.12.060

    Article  CAS  PubMed  Google Scholar 

  36. Mahdieh M, Zolanvari A, Azimee AS, Mahdieh M (2012) Green biosynthesis of silver nanoparticles by Spirulina platensis. Sci Iran 19:926–929. https://doi.org/10.1016/j.scient.2012.01.010

    Article  CAS  Google Scholar 

  37. Rao CNR, Cheetham AK (2001) Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11:2887–2894. https://doi.org/10.1039/B105058N

    Article  CAS  Google Scholar 

  38. Sujitha MV, Kannan S (2013) Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta A Mol Biomol Spectrosc 102:15–23. https://doi.org/10.1016/j.saa.2012.09.042

    Article  CAS  PubMed  Google Scholar 

  39. Upadhyay NK, Yogendra Kumar MS, Gupta A (2010) Antioxidant, cytoprotective and antibacterial effects of Sea buckthorn (Hippophae rhamnoides L.) leaves. Food Chem Toxicol 48:3443–3448. https://doi.org/10.1016/j.fct.2010.09.019

    Article  CAS  PubMed  Google Scholar 

  40. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831. https://doi.org/10.3389/fmicb.2016.01831

    Article  PubMed  PubMed Central  Google Scholar 

  41. Patil RS, Kokate MR, Kolekar SS (2012) Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 91:234–238. https://doi.org/10.1016/j.saa.2012.02.009

    Article  CAS  Google Scholar 

  42. Snega S, Ravichandran K, Baneto M, Vijayakumar S (2015) Simultaneous enhancement of transparent and antibacterial properties of ZnO films by suitable F doping. J Mater Sci Technol 31:759–765. https://doi.org/10.1016/j.jmst.2015.03.001

    Article  CAS  Google Scholar 

  43. Ravichandran K, Snega S, Jabena Begum N et al (2014) Enhancement in the antibacterial efficiency of ZnO nanopowders by tuning the shape of the nanograins through fluorine doping. Superlattices Microstruct 69:17–28. https://doi.org/10.1016/j.spmi.2014.01.020

    Article  CAS  Google Scholar 

  44. Nikparast Y, Saliani M (2018) Synergistic effect between phyto-synthesized silver nanoparticles and ciprofloxacin antibiotic on some pathogenic bacterial strains. J Med Bacteriol 7:36–43

    CAS  Google Scholar 

  45. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. https://doi.org/10.1016/j.jcis.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  46. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:1–20. https://doi.org/10.1186/s12951-017-0308-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge that this research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (Grant no. 2012R1A6A1028677).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Taek-Jeong Nam or Youn-Hee Choi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulagesan, S., Nam, TJ. & Choi, YH. Biogenic preparation and characterization of Pyropia yezoensis silver nanoparticles (P.y AgNPs) and their antibacterial activity against Pseudomonas aeruginosa. Bioprocess Biosyst Eng 44, 443–452 (2021). https://doi.org/10.1007/s00449-020-02454-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02454-x

Keywords

Navigation