Skip to main content
Log in

A scalable insect cell-based production process of the human recombinant BMX for in-vitro covalent ligand high-throughput screening

  • Rapid Communication
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Bone Marrow Tyrosine kinase in the chromosome X (BMX) is a TEC family kinase associated with numerous pathological pathways in cancer cells. Covalent inhibition of BMX activity holds promise as a therapeutic approach against cancer. To screen for potent and selective covalent BMX inhibitors, large quantities of highly pure BMX are normally required which is challenging with the currently available production and purification processes. Here, we developed a scalable production process for the human recombinant BMX (hrBMX) using the insect cell-baculovirus expression vector system. Comparable expression levels were obtained in small-scale shake flasks (13 mL) and in stirred-tank bioreactors (STB, 5 L). A two-step chromatographic-based process was implemented, reducing purification times by 75% when compared to traditional processes, while maintaining hrBMX stability. The final production yield was 24 mg of purified hrBMX per litter of cell culture, with a purity of > 99%. Product quality was assessed and confirmed through a series of biochemical and biophysical assays, including circular dichroism and dynamic light scattering. Overall, the platform herein developed was capable of generating 100 mg purified hrBMX from 5 L STB in just 34 days, thus having the potential to assist in-vitro covalent ligand high-throughput screening for BMX activity inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Tamagnone L, Lahtinen I, Mustonen T et al (1994) BMX, a novel nonreceptor tyrosine kinase gene of the BTK/ITK/TEC/TXK family located in chromosome Xp22.2. Oncogene 9:3683–3688

    CAS  PubMed  Google Scholar 

  2. Zhang R, Xu Y, Ekman N et al (2003) Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway. J Biol Chem 278:51267–51276. https://doi.org/10.1074/jbc.M310678200

    Article  CAS  PubMed  Google Scholar 

  3. Dai B, Chen H, Guo S et al (2010) Compensatory upregulation of tyrosine kinase Etk/BMX in response to androgen deprivation promotes castration-resistant growth of prostate cancer cells. Cancer Res 70:5587–5596. https://doi.org/10.1158/0008-5472.CAN-09-4610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fox JL, Storey A (2015) BMX negatively regulates BAK function, thereby increasing apoptotic resistance to chemotherapeutic drugs. Cancer Res 75:1345–1355. https://doi.org/10.1158/0008-5472.CAN-14-1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang T, Guo Z, Dai B et al (2004) Bi-directional regulation between tyrosine kinase Etk/BMX and tumor suppressor p53 in response to DNA damage. J Biol Chem 279:50181–50189. https://doi.org/10.1074/jbc.M409108200

    Article  CAS  PubMed  Google Scholar 

  6. von Manstein V, Yang CM, Richter D et al (2013) Resistance of cancer cells to targeted therapies through the activation of compensating signaling loops. Curr Signal Transduct Ther 8:193–202. https://doi.org/10.2174/1574362409666140206221931

    Article  CAS  Google Scholar 

  7. Jarboe JS, Dutta S, Velu SE, Willey CD (2013) Mini-review: Bmx kinase inhibitors for cancer therapy. Recent Pat Anticancer Drug Discov 8:228–238. https://doi.org/10.2174/15748928113089990043

    Article  CAS  PubMed  Google Scholar 

  8. Rajantie I, Ekman N, Iljin K et al (2001) Bmx tyrosine kinase has a redundant function downstream of angiopoietin and vascular endothelial growth factor receptors in arterial endothelium. Mol Cell Biol 21:4647–4655. https://doi.org/10.1128/MCB.21.14.4647-4655.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miller LK (1997) Introduction to the baculoviruses. In: Miller LK (ed) The baculoviruses. The viruses, Springer, Boston, MA, pp 1–6

    Chapter  Google Scholar 

  10. van Oers MM, Pijlman GP, Vlak JM (2015) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96(Pt 1):6–23. https://doi.org/10.1099/vir.0.067108-0

    Article  CAS  PubMed  Google Scholar 

  11. Khow O, Suntrarachun S (2012) Strategies for production of active eukaryotic proteins in bacterial expression system. Asian Pac J Trop Biomed 2:159–162. https://doi.org/10.1016/S2221-1691(11)60213-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maranga L, Brazao TF, Carrondo MJTT (2003) Virus-like particle production at low multiplicities of infection with the baculovirus insect cell system. Biotechnol Bioeng 84:245–253. https://doi.org/10.1002/bit.10773

    Article  CAS  PubMed  Google Scholar 

  13. Muckelbauer J, Sack JS, Ahmed N et al (2011) X-ray crystal structure of bone marrow kinase in the X chromosome: a Tec family kinase. Chem Biol Drug Des 78:739–748. https://doi.org/10.1111/j.1747-0285.2011.01230.x

    Article  CAS  PubMed  Google Scholar 

  14. Wingfield PT (2015) Overview of the purification of recombinant proteins. Curr Protoc Protein Sci 80:6.1.1–6.1.35. https://doi.org/10.1002/0471140864.ps0601s80

    Article  Google Scholar 

  15. Borgstahl GEO (2007) How to use dynamic light scattering to improve the likelihood of growing macromolecular crystals. Methods Mol Biol 363:109–129. https://doi.org/10.1385/1-59745-209-2:109

    Article  CAS  PubMed  Google Scholar 

  16. Miles AJ, Wallace BA (2014) Circular dichroism spectroscopy for protein characterization: biopharmaceutical applications. In: Biophysical characterization of proteins in developing biopharmaceuticals, pp 109–137

  17. Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichroism. Biochim Biophys Acta Proteins Proteomics 1751:119–139. https://doi.org/10.1016/j.bbapap.2005.06.005

    Article  CAS  Google Scholar 

  18. Ciccarone VC, Polayes DA, Luckow VA (1998) Generation of recombinant baculovirus DNA in E.coli using a baculovirus shuttle vector. In: Reischl U (ed) Molecular diagnosis of infectious diseases. Methods in molecular Medicine™, vol 13. Humana Press, Totowa, NJ, pp 213–235. https://doi.org/10.1385/0-89603-485-2:213

    Chapter  Google Scholar 

  19. Roldão A, Oliveira R, Carrondo MJT, Alves PM (2009) Error assessment in recombinant baculovirus titration: evaluation of different methods. J Virol Methods 159:69–80. https://doi.org/10.1016/j.jviromet.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  21. Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757. https://doi.org/10.1074/mcp.T500024-MCP200

    Article  CAS  PubMed  Google Scholar 

  22. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354. https://doi.org/10.1073/pnas.76.9.4350

    Article  CAS  PubMed  Google Scholar 

  23. Sander L, Harrysson A (2007) Using cell size kinetics to determine optimal harvest time for Spodoptera frugiperda and Trichoplusia ni BTI-TN-5B1-4 cells infected with a baculovirus expression vector system expressing enhanced green fluorescent protein. Cytotechnology 54:35–48. https://doi.org/10.1007/s10616-007-9064-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luckow VA, Lee SC, Barry GF, Olins PO (1993) Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 67:4566–4579

    Article  CAS  Google Scholar 

  25. Díaz Galicia ME, Aldehaiman A, Hong SB et al (2019) Methods for the recombinant expression of active tyrosine kinase domains: guidelines and pitfalls. Methods Enzymol 621:131–152. https://doi.org/10.1016/bs.mie.2019.02.027

    Article  CAS  PubMed  Google Scholar 

  26. Wang L, Foster M, Zhang Y et al (2008) High yield expression of non-phosphorylated protein tyrosine kinases in insect cells. Protein Expr Purif 61:204–211. https://doi.org/10.1016/j.pep.2008.05.017

    Article  CAS  PubMed  Google Scholar 

  27. Assenberg R, Wan PT, Geisse S, Mayr LM (2013) Advances in recombinant protein expression for use in pharmaceutical research. Curr Opin Struct Biol 23:393–402. https://doi.org/10.1016/j.sbi.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  28. Roldão A, Cox M, Alves P et al (2014) Industrial large scale of suspension culture of insect cells. In: Industrial scale suspension culture of living cells, pp 348–389

  29. Davis TR, Wood HA (1995) Intrinsic glycosylation potentials of insect cell cultures and insect larvae. Vitr Cell Dev Biol Anim J Soc Vitr Biol 31:659–663. https://doi.org/10.1007/BF02634086

    Article  CAS  Google Scholar 

  30. Bhoir S, Shaik A, Thiruvenkatam V, Kirubakaran S (2018) High yield bacterial expression, purification and characterisation of bioactive Human Tousled-like Kinase 1B involved in cancer. Sci Rep 8:4796. https://doi.org/10.1038/s41598-018-22744-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Seixas JD, Sousa BB, Marques MC et al (2020) Rationally designed potent BMX inhibitors reveals mode of covalent binding at the atomic level. ChemRxiv. https://doi.org/10.26434/chemrxiv.11558

    Article  Google Scholar 

Download references

Acknowledgments

This work has received funding from the European Union Horizon 2020 research and innovation program, under grant agreement No 702428. Royal Society to G.J.L.B. (URF\R\180019), FCT Portugal (iFCT to G.J.L.B., IF/00624/2015, Postdoctoral Fellowship SFRH/BPD/95253/2013 to J.D.S., and PTDC/MED-QUI/28764/2017 to J.D.S.), Marie Sklodowska-Curie IF (grant agreement No. 702428 to J.D.S. Investigador FCT programme 2014 (IF/01704/2014 and IF/01704/2014/CP1229/CT0001) to A.R. and from iNOVA4 Health Research Unit (LISBOA-01-0145-FEDER-007344) FCT/ Ministério da Educação e Ciência, FCT/MCTES, FEDER, and Programa Operacional Competitividade e Internacionalização (POCI) are also acknowledged. FCT SFRH/BPD/118731/2016 to M.C.M. FCT SFRH/BD/143583/2019 to B.B.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Roldão.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, B.B., Sousa, M.F.Q., Marques, M.C. et al. A scalable insect cell-based production process of the human recombinant BMX for in-vitro covalent ligand high-throughput screening. Bioprocess Biosyst Eng 44, 209–215 (2021). https://doi.org/10.1007/s00449-020-02421-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02421-6

Keywords

Navigation