Skip to main content

Advertisement

Log in

Biobased technologies for the efficient extraction of biopolymers from waste biomass

  • Critical Review
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Regardless of considerable progress in synthetic plastic or polymer-based industry, its low biodegradability is a critical issue. Nevertheless, natural “biopolymers” are gradually replacing them for being inherently biodegradable, eco-friendly with other unique properties. This article aims to present a review regarding different extraction techniques of biopolymers [natural (cellulose, chitin, lignin, pectin, starch, xylan), synthetic (polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone (PCL), polyvinyl alcohol (PVA), polymethayl methacrylate (PMMA)] from waste using bio-based methods. The role of bio-based techniques in terms of conventional/ecologically stable strategies for biomass pre-treatment was investigated for proper utilization of waste. The review summarizes strong interplay between technological and future challenges of biopolymer extraction from waste and paints a discussion of how conventional resources could be replaced with more environmentally friendly materials. Therefore, we advocate the implementation of biomass waste from food, organic, and other bio-based industries that revolutionizes the stance of biopolymer in various emerging fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ajalloueian F, Tavanai H, Hilborn J et al (2014) Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. Biomed Res Int 2014:1–13

    Article  CAS  Google Scholar 

  2. Albuquerque MGE, Carvalho G, Kragelund C et al (2013) Link between microbial composition and carbon substrate-uptake preferences in a PHA-storing community. ISME J 7:1–12

    Article  CAS  PubMed  Google Scholar 

  3. Šprajcar M, Horvat P, Kržan A (2012) Biopolymers and bioplastics: plastics aligned with nature. European Regional Development Fund, pp 1–31

  4. Amutha K, Priya KJ (2011) Effect of pH, temperature and metal ions on amylase activity from Bacillus subtilis kcx 006. Int J Pharm Biol Sci Res 2:407–413

    CAS  Google Scholar 

  5. Arthington-skaggs BA, Jradi H, Desai T, Morrison CJ (1999) Quantitation of ergosterol content: novel method for determination of fluconazole susceptibility of Candida albicans. J Clin Microbiol 37:3332–3337

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Asoka LP, Peramune PRUSK (2018) Coconut coir pith lignin: a physicochemical and thermal characterization. Int J Biol Macromol 113:1149–1157

    Article  CAS  PubMed  Google Scholar 

  7. Babu RP, Connor KO, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:1–16

    Article  Google Scholar 

  8. Bajaj M, Winter J, Gallert C (2011) Effect of deproteination and deacetylation conditions on viscosity of chitin and chitosan extracted from Crangon crangon shrimp waste. Biochem Eng J 56:51–62

    Article  CAS  Google Scholar 

  9. Ballinas-Casarrubias L, Camacho-Davila A, Gutierrez-Méndez N et al (2016) Biopolymers from waste biomass-extraction, modification and ulterior uses. Intech, London

    Book  Google Scholar 

  10. Bhamidipati M, Scurto AM, Detamore MS (2013) The future of carbon dioxide for polymer processing in tissue engineering. Tissue Eng Part B Rev 19:221–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bleys G (2015) Technology watch: biopolymers. Essenscia Publishing, Brussels

    Google Scholar 

  12. Bret UD, Lakshmi NS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci Part B Polym Phys 3:832–864

    Google Scholar 

  13. Chang SW, Shefelbine SJ, Buehler MJ (2012) Structural and mechanical differences between collagen homo-and heterotrimers: relevance for the molecular origin of brittle bone disease. Biophys J 102:640–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chew S, Wen Y, Dzenis Y, Leong K (2006) The role of electrospinning in the emerging field of nanomedicine. Curr Pharm Des 12:4751–4770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Christias C, Couvaraki C, Georgopoulos SG et al (1975) Protein content and amino acid composition of certain fungi evaluated for microbial protein production. Appl Microbiol 29:250–254

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Dahlin RL, Kasper FK, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tissue Eng Part B Rev 17:349–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Vuyst L, Degeest B (1999) Expolysaccharides from lactic acid bacteria: technological bottlenecks and practical solutions. Macromol Symp 140:31–41

    Article  Google Scholar 

  18. Fabra MJ, Pez-Rubio Ó, Lagaron JM (2014) Biopolymers for food packaging applications. Smart Polym Appl 2014:476–509

    Google Scholar 

  19. Gabor D, Tita O (2012) Biopolymers used in food packaging: a review. Acta Univ Cibiniensis Ser e Food Technol 16:3–19

    CAS  Google Scholar 

  20. Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han YW (1975) Microbial fermentation of rice straw: nutritive composition and in vitro digestibility of the fermentation products. Appl Microbiol 29:510–514

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Han YW, Callihan CD (1974) Cellulose fermentation: effect of substrate pretreatment on microbial growth. Appl Microbiol 27:159–165

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Han YW, Srinivasan VR (1968) Isolation and characterization of a cellulose-utilizing bacterium. Appl Microbiol 16:1140–1145

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hillwig ML, Mann FM, Peters RJ (2012) NIH Public Access 95:71–76

    Google Scholar 

  25. Hu B (2014) Biopolymer-based lightweight materials for packaging applications. ACS Symp Ser 1175:239–255

    Article  CAS  Google Scholar 

  26. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575

    Article  CAS  Google Scholar 

  27. Kahawita KDHN, Samarasekara AMPB (2016) Extraction and characterization of cellulosic fibers from sawmill waste. In: 2016 Moratuwa Engineering Research Conference (MERCon), IEEE, pp 343–348

  28. Kaur G (2015) Strategies for large-scale production of polyhydroxyalkanoates. Chem Biochem Eng Q 29:157–172

    Article  CAS  Google Scholar 

  29. Kaur S, Dhillon GS (2015) Recent trends in biological extraction of chitin from marine shell wastes: a review. Crit Rev Biotechnol 35:44–61

    Article  CAS  PubMed  Google Scholar 

  30. Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375

    Article  CAS  Google Scholar 

  31. Manni L, Ghorbel-Bellaaj O, Jellouli K et al (2010) Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from bacillus cereus SV1. Appl Biochem Biotechnol 162:345–357

    Article  CAS  PubMed  Google Scholar 

  32. Manuscript A, Junctions L (2014) NIH Public Access 16:1917–1921

    Google Scholar 

  33. Market Intelligence Study from Allied Development (2017) Biopolymers in packaging 2013 to 2017. In: Global markets, environmental impact, and technologies, pp 1–320

  34. Nanda HS, Chen S, Zhang Q et al (2014) Collagen scaffolds with controlled insulin release and controlled pore structure for cartilage tissue engineering. Biomed Res Int 2014:1–10

    Article  CAS  Google Scholar 

  35. Nechifor CD, Dorohoi DO, Ciobanu C (2009) The influence of gamma radiations on physico-chemical properties of some polymer membranes. Rom Reports Phys 54:349–359

    CAS  Google Scholar 

  36. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K (2008) The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 33:448–477

    Article  CAS  Google Scholar 

  37. Panamgama LA, Peramune PRUSK (2017) Extraction and modification of lignin biopolymer spectroscopic structure elucidation and thermal analysis of coir pith and straw. In: Moratuwa engineering research conference, pp 13–16

  38. Peña C, Castillo T, García A et al (2014) Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 7:278–293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Pfaltzgraff LA, Bruyn M, Cooper EC et al (2013) Food waste biomass: a resource for high-value chemicals. Green Chem 15:307

    Article  CAS  Google Scholar 

  40. Puyol D, Batstone DJ, Hülsen T et al (2017) Resource recovery from wastewater by biological technologies: opportunities, challenges, and prospects. Front Microbiol 7:1–23

    Article  Google Scholar 

  41. Ramani N (2005) Biobased and biodegradable polymer materials: rationale, drivers, and technology exemplars. Degrad Polym Mater 939:282–306

    Google Scholar 

  42. Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R et al (2015) Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int 2015:1–15

    Article  CAS  Google Scholar 

  43. Sachindra NM, Mahendrakar NS (2005) Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Bioresour Technol 96:1195–1200

    Article  CAS  PubMed  Google Scholar 

  44. Saha S, Arshad M, Zubair M, Ullah A (2019) Keratin as a biopolymer: extraction from waste biomass and applications. Springer, Berlin, pp 1–224

    Google Scholar 

  45. Singh AV (2011) Biopolymers in drug delivery: a review. Pharmacologyonline 1:666–674

    Google Scholar 

  46. Younes I, Hajji S, Frachet V et al (2014) Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. Int J Biol Macromol 69:489–498

    Article  CAS  PubMed  Google Scholar 

  47. Sharma HK, Xu C, Qin W (2019) Biological pretreatment of lignocellulosic biomass for biofuels and bioproducts: an overview. Waste Biomass Valoriz 10:235–251

    Article  CAS  Google Scholar 

  48. Saleh AM (2011) Production, purification and characterization of α-amylase from Trichoderma harzianum grown on mandarin peel. Afr J Microbiol Res 5:1018–1028

    Article  Google Scholar 

  49. Sutherland IW (2007) Bioplastic and biopolymer production. Biotechnology 5:152–176

    Google Scholar 

  50. Zaku SG, Aguzue EOC, Thomas SA (2011) Extraction and characterization of chitin; a functional biopolymer obtained from scales of common carp fish (Cyprinus carpio l.): a lesser known source. Afr J Food Sci 5:478–483

    CAS  Google Scholar 

  51. Tahri I, Devin IZ, Ruelle J et al (2016) Extraction and characterization of fibers from palm tree. BioResources 11:7016–7025

    Article  CAS  Google Scholar 

  52. Tan GYA, Chen CL, Li L et al (2014) Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers (Basel) 6:706–754

    Article  CAS  Google Scholar 

  53. Teli MD, Sheikh J (2012) Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon. Int J Biol Macromol 50:1195–1200

    Article  CAS  PubMed  Google Scholar 

  54. Torabi K, Farjood E, Hamedani S (2015) Rapid prototyping technologies and their applications in prosthodontics, a review of literature. J Dent (Shīrāz, Iran) 16:1–9

    Google Scholar 

  55. Torres JA, Dewitt-Mireles C, Savant V (1999) Two food applications of biopolymers: edible coatings controlling microbial surface spoilage and chitosan use to recover proteins from aqueous processing wastes. Biopolymers 723:248–282

    Article  CAS  Google Scholar 

  56. Tsang YF, Kumar V, Samadar P et al (2019) Production of bioplastic through food waste valorization. Environ Int 127:625–644

    Article  CAS  PubMed  Google Scholar 

  57. Van Beilen JB, Poirier Y (2008) Production of renewable polymers from crop plants. Plant J 54:684–701

    Article  PubMed  CAS  Google Scholar 

  58. Varilly P, Chandler D (2012) NIH Public Access 5:265–275

    Google Scholar 

  59. Viseras C, Aguzzi C, Cerezo P, Bedmar MC (2008) Biopolymer–clay nanocomposites for controlled drug delivery. Mater Sci Technol 24:1020–1026

    Article  CAS  Google Scholar 

  60. Tribot A, Amer G, Abdou Alio M et al (2019) Wood-lignin: Supply, extraction processes and use as bio-based material. Eur Polym J 112:228–240

    Article  CAS  Google Scholar 

  61. Vartiainen J, Vähä-Nissi M, Harlin A (2014) Biopolymer Films and Coatings in Packaging Applications—A Review of Recent Developments. Mater Sci Appl 05:708–718

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Biotechnology, National Institute of Technology Raipur (CG), India for providing the facility, space, and resources for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awanish Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, A., Kumar, A. Biobased technologies for the efficient extraction of biopolymers from waste biomass. Bioprocess Biosyst Eng 42, 1893–1901 (2019). https://doi.org/10.1007/s00449-019-02199-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02199-2

Keywords

Navigation