Skip to main content

Advertisement

Log in

Novel fabrication of gelatin-encapsulated copper nanoparticles using Aspergillus versicolor and their application in controlling of rotting plant pathogens

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The fabrication of copper nanoparticles (CuNPs) with smallest size and more stability, with potential effects in plant disease management, may need a modified protocol for green synthesis. In this study, we could biosynthesize stable CuNPs extracellularly by an eco-friendly route using A. versicolor. The biosynthesis of nanoparticles was confirmed by UV–visible spectroscopy, Fourier transform infrared (FTIR), transmission electron microscope (TEM) and dynamic light scattering (DLS) techniques. CuNPs have a size range of 23–82 nm with round to polygonal shape. Antifungal study showed that CuNPs have potential antifungal activity against rotting plant pathogens, where 3.2 and 2.8 µg ml−1 of nanoparticle solution totally inhibited the growth of both Fusarium oxysporum and Phytophthora parasitica, respectively. Damaged hyphae with limited deformed spores were detected through scanning electron microscope (SEM) analysis after the treatment of both pathogens with CuNPs. Between all tested polymers, gelatin-encapsulated nanoparticles were characterized ‘by their smallest size, 7–33 nm, and regular spherical shape at all experimental conditions. After 6 months of storage, gelatin-CuNPs maintained full nanoscale and antifungal properties compared with uncoated particles which lost these properties after only 1 month. It is concluded that CuNPs can be biosynthesized by an eco-friendly cheap method using A. versicolor and can be preserved stably for a long time with the smallest size and full antifungal activity by their encapsulation with gelatin as a natural polymer. These nanoparticles can be used safely in the management of plant rotting fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sivakumar J, Premkumar C, Santhanam P, Saraswathi N (2011) Biosynthesis of silver nanoparticles using Calotropis gigantean leaf. African J Basic Appl Sci 3(6):265–270

    Google Scholar 

  2. Umer A, Naveed S, Ramzan N, Rafique MS (2012) Selection of a suitable method for the synthesis of copper nanoparticles. Nano: Brief Reports and Reviews 7(5), 1230005–1230023. doi: 10.1142/S1793292012300058.

    Article  Google Scholar 

  3. Yang G, Chai S, Xiong X, Zhang S, Yu L, Zhang P (2012) Preparation and tribological properties of surface modified Cu nanoparticles. Trans Nonferrous Met Soc China 22(2):366–372. https://doi.org/10.1016/S1003-6326(11)61185-0

    Article  CAS  Google Scholar 

  4. Ansilin S, Nair JK, Aswathy C, Rama V, Peter J, Persis JJ (2016) Green synthesis and characterisation of copper oxide nanoparticles using Azadirachta indica (neem) leaf aqueous extract. J Nanosci Nanotechnol 2(5):221–223

    Google Scholar 

  5. Lloyd JR, Byrne JM, Coker VS (2011) Biotechnological synthesis of functional nanomaterials. Curr Opin Biotechnol 22(4):509–515. https://doi.org/10.1016/j.copbio.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  6. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318. https://doi.org/10.1016/S0927-7765(02)00174-1

    Article  CAS  Google Scholar 

  7. Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5(5):233–243. https://doi.org/10.4172/2157-7439.1000233

    Article  CAS  Google Scholar 

  8. Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using penicillium aurantiogriseum, penicillium citrinum and penicillium wakasmanii. Dig J Nanomater Biostruct 7(3):999–1005

    Google Scholar 

  9. Abd-El-Aty AA, Ammar HA (2016) Potential characterization and antimicrobial applications of newly bio-synthesized silver and copper nanoparticles using the novel marine-derived fungus Alternaria tenuissima KM651985. Res J Biotech 11(8):58–69

    Google Scholar 

  10. Naqvi STQ, Qadir MI, Muhammad SA, Shah Z, Fatima N, Ali A (2017) Characterization and biological studies of copper nanoparticles synthesized by Aspergillus niger. J Bionanosci 11(2):136–140. https://doi.org/10.1166/jbns.2017.1426

    Article  CAS  Google Scholar 

  11. Sánchez-Sanhueza G, Fuentes-rodríguez D, Bello-toledo H (2016) Copper nanoparticles as potential antimicrobial agent in disinfecting root canals: a systematic review. Int J Odontostomat 10(3):547–554. https://doi.org/10.4067/S0718-381X2016000300024

    Article  Google Scholar 

  12. Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed 8(1):4467–4479. https://doi.org/10.2147/IJN.S50837

    Article  CAS  Google Scholar 

  13. Begletsova NN, Shinkarenko OA, Selifonova EI, Tsvetkova OY, Zakharevich AM, Chernova RK, Kletsov AA, Glukhovskoy EG (2017) Synthesis of copper nanoparticles stabilized with cetylpyridinium chloride micelles. Adv Mater Lett 8(4):404–409. https://doi.org/10.5185/amlett.2017.1423

    Article  CAS  Google Scholar 

  14. Sudhamoy M, Nitupama M, Adinpunya M (2009) Salicylic acid induced resistance to Fusarium oxysporum f. sp. lycopersici in tomao. Plant Physiol Biochem 47:642–649

    Article  Google Scholar 

  15. El-Mohamady RSR, El-Mougy NS, Abdel-Kader MM, Daami-Remad M (2014) Physical and biological treatments as integrated control measures against tomato root diseases under field conditions. Int J Eng Innov Technol 3:141–148

    Google Scholar 

  16. Boix-Ruiz A, Marín-Guirao JI, de Cara-García M, CamachoFerre F, Tello-Marquina JC (2017) Pathogenicity of plant and soil isolates of Phytophthora parasitica on tomato and pepper. Eur J Plant Pathol 148:607–615. https://doi.org/10.1007/s10658-016-1116-2

    Article  CAS  Google Scholar 

  17. Minton EB (1986) Half a century dynamics and control of cotton disease. In: Proceedings of Beltwiae cotton conference. National Cotton Council of America, Memphis, TN, USA, pp 33–35

  18. Lumsden RD, Locke JC (1989) Biological control of damping-off caused by Pythium ultimum and Rhizoctonia solani with Gliocladium virens in soilless mix. Phytopathology 79(3):361–366

    Article  Google Scholar 

  19. Raper KB, Fennell DI (1965) The genus Aspergillus. Williams & Wilkins, Baltimore, pp 1–686

    Google Scholar 

  20. Pitt JI, Hocking AD (1997) Fungi and food spoilage, 2nd edn. Blackie Academic and Professional, London

    Book  Google Scholar 

  21. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  22. Kumari M, Mishra A, Pandey S, Singh SP, Chaudhry V, Mudiam MKR, Shukla S, Kakkar P, Nautiyal CS (2016) Physico-chemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold nano particles. Sci Rep 6(27575):1–14. https://doi.org/10.1038/srep27575

    Article  CAS  Google Scholar 

  23. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101(3):11030–11035

    Article  CAS  Google Scholar 

  24. Ninganagouda S, Rathod V, Jyoti H, Singh D, Prema K, Ul-Haq M (2013) Extracellular biosynthesis of silver nanoparticles using Aspergillus flavus and their antimicrobial activity against gram negative MDR strains. Int J Pharma Bio Sci 4(4):222–229

    CAS  Google Scholar 

  25. Roy K, Biswas S, Banaejee PC (2013) Green synthesis of silver nanoparticles by using grape (Vistis vinifera) fruit extract: characterization of the particles and study of antibacterial activity. Res J Pharm Biol Chem Sci 4(1):1271–1278

    CAS  Google Scholar 

  26. Majumder BR (2012) Bioremediation: copper nanoparticles from electronic- waste. Int J of Eng Sci Technol 4(1):4380–4389

    Google Scholar 

  27. Krithiga N, Jayachitra A, Rajalakshmi A (2013) Synthesis, characterization and analysis of the effect of copper oxide nanoparticles in biological systems. Indian J Nano Sci 1:6–15

    Google Scholar 

  28. Busi S, Rajkumari J, Ranjan B, Karuganti S (2014) Green rapid biogenic synthesis of bioactive silver nanoparticles (AgNPs) using Pseudomonas aeruginosa. IET Nanobiotechnol 8(4):267–274. https://doi.org/10.1049/iet-nbt.2013.0059

    Article  PubMed  Google Scholar 

  29. Ebrahimi K, Shiravand S, Mahmoudvand H (2017) Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinose fruit and investigation of its antibacterial activity. Marmara Pharm J 21(4):866–871. https://doi.org/10.12991/mpj.2017.31

    Article  CAS  Google Scholar 

  30. Mott D, Galkowski J, Wang L, Luo J, Zhong CJ (2007) Synthesis of size-controlled and shaped copper nanoparticles. Langmuir 23(10):5740–5745. https://doi.org/10.1021/la0635092

    Article  CAS  PubMed  Google Scholar 

  31. Cuevas R, Durán N, Diez MC, Tortella GR, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from chilean forest. J Nanomater. https://doi.org/10.1155/2015/789089

    Article  Google Scholar 

  32. Xiong J, Wang Y, Xue Q, Wu X (2011) Synthesis of highly stable dispersions of nano sized copper particles using l-ascorbic acid. Green Chem 13(4):900–904. https://doi.org/10.1039/c0gc00772b

    Article  CAS  Google Scholar 

  33. Gade A, Gaikwad S, Duran N, Rai M (2014) Green synthesis of silver nanoparticles by Phoma glomerate. Micron 59:52–59. https://doi.org/10.1016/j.micron.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  34. Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M (2001) Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17(5):1674–1679. https://doi.org/10.1021/la001164w

    Article  CAS  Google Scholar 

  35. Viet PV, Nguyen HT, Cao TM, Hieu LV (2016) Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater. https://doi.org/10.1155/2016/1957612

    Article  Google Scholar 

  36. Seku K, Ganapuram BR, Pejjai B, Kotu GM, Narasimha G (2018) Hydrothermal synthesis of copper nanoparticles, characterization and their biological applications. Int J Nano Dimens 9(1):7–14

    CAS  Google Scholar 

  37. Rubina MS, Vasilkov AY, Naumkin AV, Shtykova EV, Abramchuk SS, Alghuthaymi MA, Abd-Elsalam KA (2017) Synthesis and characterization of chitosan–copper nanocomposites and their fungicidal activity against two sclerotia-forming plant pathogenic fungi. J Nanostruct Chem 7(3):249–258. https://doi.org/10.1007/s40097-017-0235-4

    Article  CAS  Google Scholar 

  38. Savi GD, Scussel VM (2014) Inorganic compounds at regular and nanoparticle size and their anti-toxigenic fungi activity. J Nano Res 97:589–598. https://doi.org/10.14455/DOA.res.2014.97

    Article  Google Scholar 

  39. Shende S, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31(6):865–873. https://doi.org/10.1007/s11274-015-1840-3

    Article  CAS  PubMed  Google Scholar 

  40. Sankhla A, Sharma R, Yadav RS, Kashyap D, Kothari SL, Kachhwaha S (2016) Biosynthesis and characterization of cadmium sulfide nanoparticles—an emphasis of zeta potential behavior due to capping. Mater Chem Phys 70:44–51. https://doi.org/10.1016/j.matchemphys.2015.12.017

    Article  CAS  Google Scholar 

  41. Musa A, Ahmad MB, Hussein MZ, Saiman MI, Sani HA (2016) Effect of gelatin-stabilized copper nanoparticles on catalytic reduction of methylene blue. Nanoscale Res Lett 11:438–451. https://doi.org/10.1186/s11671-016-1656-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patra JK (2014) Baek K-H (2014) Green nanobiotechnology: factors affecting synthesis and characterization techniques. J Nanomater. https://doi.org/10.1155/2014/417305

    Article  Google Scholar 

  43. Zhang D, Yang H (2013) Gelatin-stabilized copper nanoparticles: Synthesis, morphology, and their surface-enhanced Raman scattering properties. Phys B 415:44–48. https://doi.org/10.1016/j.physb.2013.01.041

    Article  CAS  Google Scholar 

  44. Mao A, Ding M, Jin X, Gu X, Cai C, Xin C, Zhang T (2015) Direct, rapid synthesis of water dispersed copper nanoparticles and their surface enhanced Raman scattering properties. J Mol Struct 1079:396–401. https://doi.org/10.1016/j.molstruc.2014.09.003

    Article  CAS  Google Scholar 

  45. Hegazya MA, Badawi AM, Abd El Rehim SS Kamel WM. Influence of copper nanoparticles capped by cationic surfactant as modifier for steel anti-corrosion paints. Egypt J Pet 2013; 22: 549–556. doi.org/10.1016/j.ejpe.2013.11.009

    Article  Google Scholar 

  46. Caroling G, Priyadharshini MN, Vinodhini E, Ranjitham AM, Shanthi P (2015) Biosynthesis of copper nanoparticles using aqueous guava extract characterisation and study of antibacterial effects. Int J Pharm Bio Sci 5(2):25–43. https://doi.org/10.12785/ijnc/010203

    Article  CAS  Google Scholar 

  47. Baygazieva EK, Yesmurzayeva NN, Tatykhanova GS, Mun GA, Khutoryanskiy VV, Kudaibergenov SE (2014) Polymer protected gold nanoparticles: synthesis, characterization and application in catalysis. Int J Biol and Chem 7(1):14–23. https://doi.org/10.26577/2218-7979-2014-7-1-14-23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hala A. Ammar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, H.A., Rabie, G.H. & Mohamed, E. Novel fabrication of gelatin-encapsulated copper nanoparticles using Aspergillus versicolor and their application in controlling of rotting plant pathogens. Bioprocess Biosyst Eng 42, 1947–1961 (2019). https://doi.org/10.1007/s00449-019-02188-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02188-5

Keywords

Navigation