Skip to main content
Log in

Enhancing candicidin biosynthesis by medium optimization and pH stepwise control strategy with process metabolomics analysis of Streptomyces ZYJ-6

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Candicidin is one of the most effective antimonilial agents. In order to enhance candicidin productivity, medium optimization and pH stepwise control strategy in process optimization were conducted by Streptomyces ZYJ-6. With the aid of Design Expert software and N/C/P-sources regulation, chemically defined medium fit for cell growth and candicidin biosynthesis was developed. Moreover, pH effects on cell growth and metabolism were investigated. The results indicated that the optimal pH for cell growth and candicidin biosynthesis were 6.8 and 7.8, respectively. The metabolomics analysis revealed that the pH stepwise control strategy (pH 6.8–7.8) combined the advantages of pH 6.8 and pH 7.8 and avoided precursor limitation in pH 6.8 and 7.8. Consequently, the pH stepwise control strategy played positive performance on cell growth and candicidin biosynthesis with the maximum titer of 5161 µg/mL. The titer of 5161 µg/mL was the highest level ever reported for candicidin production, which laid a solid foundation for industrial application. Additionally, pH stepwise control strategy was important reference for process optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Waksman SA, Lechevalier HA, Schaffner CP (1965) Candicidin and other polyenic antifungal antibiotics: a review*. Bull World Health Org 33(2):219–226

    CAS  PubMed  Google Scholar 

  2. Mao XZ, Wang F, Zhang JG, Chen S, Deng ZX, Shen YL, Wei DZ (2009) The pH shift and precursor feeding strategy in a low-toxicity FR-008/candicidin derivative CS103 fermentation bioprocess by a mutant of Streptomyces sp. FR-008. Appl Biochem Biotech 159(3):673–686

    Article  CAS  Google Scholar 

  3. Lechevalier H, Acker RF, Corke CT, Haenseler CM, Waksman SA (1953) Candicidin, a new antifungal antibiotic. Mycologia 45:155–171

    Article  Google Scholar 

  4. Chen S, Huang X, Zhou XF, Bai LQ, He J, Jeong KJ, Lee SY, Deng ZX (2003) Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. Chem Biol 10(11):1065–1076

    Article  CAS  Google Scholar 

  5. Liang RF, Zhou Q (1987) Studies on fusion breeding of protoplasta from antibiotic producing strain 5120-III genetic analysis of fusion products. Chin J Biotechnol 3(2):130–136

    CAS  Google Scholar 

  6. Zhou YJ, Li JL, Zhu J, Chen S, Bai LQ, Zhou XF, Wu HM, Deng ZX (2008) Incomplete beta-ketone processing as a mechanism for polyene structural variation in the FR-008/candicidin complex. Chem Biol 15(6):629–638

    Article  CAS  Google Scholar 

  7. Acker RF, Lechevalier H (1954) Some nutritional requirements of Streptomyces griseus 3570 for growth and candicidin production. Appl Microbiol 2(3):152–157

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu Q, Xiao L, Zhou Y, Deng K, Tan G, Han Y, Liu X, Deng Z, Liu T (2016) Development of Streptomyces sp. FR-008 as an emerging chassis*. Synth Syst Biotechnol 1(3):207–214

    Article  Google Scholar 

  9. Zhu BF, Xu Y (2010) Production of tetramethylpyrazine by batch culture of Bacillus subtilis with optimal pH control strategy. J Ind Microbiol Biot 37(8):815–821

    Article  CAS  Google Scholar 

  10. Li X, Lin Y, Chang M, Jin Q, Wang X (2015) Efficient production of arachidonic acid by Mortierella alpina through integrating fed-batch culture with a two-stage pH control strategy. Bioresour Technol 181(Supplement C):275–282

    Article  CAS  Google Scholar 

  11. Liu C-M, McDaniel L, Schaffner C (1975) Factors affecting the production of candicidin. Antimicrob Agents Ch 7(2):196–202

    Article  CAS  Google Scholar 

  12. Martin JF, McDaniel LE (1975) Kinetics of biosynthesis of polyene macrolide antibiotics in batch cultures: cell maturation time. Biotechnol Bioeng 17(6):925–938

    Article  CAS  Google Scholar 

  13. Gil JA, Naharro G, Villanueva JR, Martín JF (1985) Characterization and regulation of p-aminobenzoic acid synthase from Streptomyces griseus. J Gen Microbiol 131(6):1279–1287

    CAS  PubMed  Google Scholar 

  14. Fei R, Long C, Xiong S, Tong Q (2017) Enhanced acarbose production by Streptomyces M37 using a two-stage fermentation strategy. Plos One 12(2):1–11

    Google Scholar 

  15. Jiang J, Sun YF, Tang X, He CN, Shao YL, Tang YJ, Zhou WW (2018) Alkaline pH shock enhanced production of validamycin A in fermentation of Streptomyces hygroscopicus. Bioresour Technol 249(Supplement C):234–240

    Article  CAS  Google Scholar 

  16. Ochi K (1987) Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus: significance of the stringent response (ppGpp) and GTP content in relation to A factor. J Bacteriol 169(8):3608–3616

    Article  CAS  Google Scholar 

  17. Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33(4):305–325

    Article  Google Scholar 

  18. Chen X, Tang L, Li S, Liao L, Zhang J, Mao Z (2011) Optimization of medium for enhancement of ε-Poly-l-lysine production by Streptomyces sp. M-Z18 with glycerol as carbon source. Bioresource Technol 102(2):1727–1732

    Article  CAS  Google Scholar 

  19. Mao XZ, Shen YL, Wei DZ, Chen S, Deng ZX (2005) Determination of Candicidin/FR-008 and related components in fermentation broth by RP-HPLC. J Chin Pharm Sci 14(2):115–118

    CAS  Google Scholar 

  20. de Jonge LP, Buijs NA, ten Pierick A, Deshmukh A, Zhao Z, Kiel JA, Heijnen JJ, van Gulik WM (2011) Scale-down of penicillin production in Penicillium chrysogenum. Biotechnol J 6(8):944–958

    Article  Google Scholar 

  21. Cipollina C, ten Pierick A, Canelas AB, Seifar RM, van Maris AJA, van Dam JC, Heijnen JJ (2009) A comprehensive method for the quantification of the non-oxidative pentose phosphate pathway intermediates in Saccharomyces cerevisiae by GC-IDMS. J Chromatogr B 877(27):3231–3236

    Article  CAS  Google Scholar 

  22. Hong M, Mou H, Liu X, Huang M, Chu J (2017) 13C-assisted metabolomics analysis reveals the positive correlation between specific erythromycin production rate and intracellular propionyl-CoA pool size in Saccharopolyspora erythraea. Bioproc Biosyst Eng 40:1337–1348

    Article  Google Scholar 

  23. Zou X, Li WJ, Zeng W, Chu J, Zhuang YP, Zhang SL (2011) An assessment of seed quality on erythromycin production by recombinant Saccharopolyspora erythraea strain. Bioresour Technol 102(3):3360–3365

    Article  CAS  Google Scholar 

  24. Liras P, Villanueva JR, Martín JF (1977) Sequential expression of macromolecule biosynthesis and candicidin formation in Streptomyces griseus. J Gen Microbiol 102(2):269–277

    Article  CAS  Google Scholar 

  25. Martin JF, Demain AL (1976) Control by phosphate of candicidin production. Biochem Bioph Res Co 71(4):1103–1109

    Article  CAS  Google Scholar 

  26. Wang T, Bai LQ, Zhu DQ, Lei X, Liu G, Deng ZX, You DL (2012) Enhancing macrolide production in Streptomyces by coexpressing three heterologous genes. Enzyme Microb Tech 50(1):5–9

    Article  CAS  Google Scholar 

  27. Dias C, Sousa S, Caldeira J, Reis A, Lopes da Silva T (2015) New dual-stage pH control fed-batch cultivation strategy for the improvement of lipids and carotenoids production by the red yeast Rhodosporidium toruloides NCYC 921. Bioresour Technol 189(Supplement C):309–318

    Article  CAS  Google Scholar 

  28. Tang L, Zhang YX, Hutchinson CR (1994) Amino acid catabolism and antibiotic synthesis: valine is a source of precursors for macrolide biosynthesis in Streptomyces ambofaciens and Streptomyces fradiae. J Bacteriol 176(19):6107–6119

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Delin You (Shanghai Jiao Tong University) for supplying Streptomyces ZYJ-6. This work was financially supported by a grant from the Major State Basic Research Development Program of China (973 Program, no. 2012CB721000G), NWO-MoST Joint Program (2013DFG32630) and national key special Program 2017YFF 0204600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Chu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 474 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Sun, X., Wang, T. et al. Enhancing candicidin biosynthesis by medium optimization and pH stepwise control strategy with process metabolomics analysis of Streptomyces ZYJ-6. Bioprocess Biosyst Eng 41, 1743–1755 (2018). https://doi.org/10.1007/s00449-018-1997-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1997-x

Keywords

Navigation