Skip to main content
Log in

Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this study, we evaluated the concentration of lipases from Aspergillus niger using efficient and low-cost methods aiming at application in the treatment of waste cooking oils. The change in ionic strength of the medium by the addition of salt and precipitation with ethanol increased the specific activity from 2.90 to 28.50 U/mg, resulting in a purification factor of 9.82-fold. The use of acetone resulted in a specific activity of 33.63 U/mg, resulting in a purification factor of 11.60-fold. After that, the concentrated lipase was used in the hydrolysis of waste cooking oil and 753.07 and 421.60 µmol/mL of free fatty acids were obtained for the enzyme precipitated with ethanol and acetone, respectively. The hydrolysis of waste cooking oil catalyzed by homemade purified lipase in ultrasonic media can be considered a pretreatment of oil by converting a significant amount of triglycerides into free fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Castro HF, Mendes AA, Santos JC, Aguiar CL (2004) Modificação de óleos e gorduras por biotransformação. Quím Nova 27:146–156

    Article  Google Scholar 

  2. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Thomaz-Soccol V (1999) The realm of microbial lipases in biotechnology. Biotechnol App Biochem 65:252–254

    Google Scholar 

  3. Cunha AG, Besteti M, Manoel EA, Silva AAT, Almeida RV, Simas AB, Fernandez-Lafuente R, Pinto JC (2014) Preparation of core–shell polymer supports to immobilize lipase B from Candida antarctica effect of the support nature on catalytic properties. J Mol Catal B-Enzym 100:59–67

    Article  CAS  Google Scholar 

  4. Ayaz B, Ugur A, Boran R (2015) Purification and characterization of organic solvent tolerant lipases from Streptomyces sp. OC119-7 for biodiesel production. Biocatal Agric Biotechnol 4:103–108

    Google Scholar 

  5. Gururaj SR, Ganesan ND, Pennathur G (2016) Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07 P. Braz J Microbiol 47:647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ishihara T, Yamamoto S (2005) Optimization of monoclonal antibody purification by ion-exchange chromatography. Application of simple methods with linear gradient elution experimental data. J Chromatogr A 1069:99–106

    Article  CAS  PubMed  Google Scholar 

  7. Moraes CC, Kalil SJ (2009) Strategy for a protein purification design using C-phycocyanin extract. Bioresour Technol 100:5312–5317

    Article  CAS  PubMed  Google Scholar 

  8. Gill PK, Manhas RK, Singh P (2006) Purification and properties of a heat-stable exo-inulinase isoform from Aspergillus fumigatus. Bioresour Technol 97:894–902

    Article  CAS  PubMed  Google Scholar 

  9. Cui L, Du G, Zhang D, Liu H, Chen J (2007) Purification and characterization of transglutaminase from a newly isolated Streptomyces hygroscopicus. Food Chem 105:612–618

    Article  CAS  Google Scholar 

  10. Martins TS (2001) Produção e purificação de lipases de Yarrowia lipolytica (IMUFRJ 50682), Dissertação de Mestrado. Centro de Ciências da Saúde, Universidade Federal de Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  11. Cortez EV, Pessoa AJR (1999) Xylanase and β-xylosidase separation by fractional precipitation. Process Biochem 35:277–283

    Article  CAS  Google Scholar 

  12. Gupta R, Beg O, Lorenz P (2012) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32

    Google Scholar 

  13. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  14. Pinto-Coelho RM (2009) Reciclagem e desenvolvimento sustentável no Brasil. Recóleo Coleta e Reciclagem de Óleos, Belo Horizonte, pp 241–282

    Google Scholar 

  15. Treichel H, Sbardelotto M, Venturin B, Dall Agnol A, Mulinari J, Golunski SM, Baldoni DB, Bevilacqua CB, Jacques RJS, Vargas GDLP, Mossi AJ (2016) Lipase production from a newly isolated Aspergillus niger by solid state fermentation. Curr Biotechnol 5:1–7

    Google Scholar 

  16. Golunski S, Astolfi V, Carniel N, Oliveira D, DI Luccio M, Mazutti MA, Treichel H (2011) Ethanol precipitation and ultrafiltration of inulinases from Kluyveromyces marxianus. Sep Purif Technol 78:261–265

    Article  CAS  Google Scholar 

  17. Golunski SM, Silva MF, Torbes C, Rosseto V, Perin RK, Mossi AJ, Rigo D, Dallago R, Di Luccio M, Treichel H (2017) Purification of inulinases by changing the ionic strength of the medium and precipitation with alcohols. An Acad Bras Ciênc 89:57–63

    Article  CAS  PubMed  Google Scholar 

  18. Cavalcanti EAC, Gutarra MLE, Freire DMG, Castilho LR, Sant’Anna GL (2005) Lipase production by solid-state fermentation in fixed-bed bioreactors. Braz Arch Biol Technol 48:9–84

    Article  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  20. Mulinari J, Venturin B, Sbardelotto M, Dall Agnol A, Scapini T, Camargo AF, Baldissarelli DP, Modkovski TA, Rossetto V, Dalla Rosa C, Reichert FW Jr, Golunski SM, Vieitez I, Vargas GDLP., Mossi AJ, Treichel H (2017) Ultrasound-assisted hydrolysis of waste cooking oil catalyzed by homemade lipases. Ultrason Sonochem 35:313–318

    Article  CAS  PubMed  Google Scholar 

  21. Freire DM, Teles EM, Bom EP, Sant’Anna GL Jr (1997) Lipase production by Peniillium restrictum in a bench-scale fermenter: effect of carbon and nitrogen nutrition, agitation, and aeration. Appl Biochem Biotech 63:63–65

    Google Scholar 

  22. Barbosa JMP, Souza RL, Fricks AT, Zanin GM, Soares CMF, Lima ÁS (2011) Purification of lipase produced by a new source of Bacillus in submerged fermentation using an aqueous two-phase system. J Chromatogr B 879:3853–3858

    Article  CAS  Google Scholar 

  23. Porto TS, Silva GM, Porto CS, Cavalcanti MTH, Neto BB, Lima-Filho JL, Converti A, Porto ALF, Pessoa A Jr (2008) Liquid–liquid extraction of proteases from fermented broth by PEG/citrate aqueous two-phase system. Chem Eng Process 47:716–721

    Article  CAS  Google Scholar 

  24. Pan IH, Yao HJ, Li YK (2001) Effective extraction and purification of β-xylosidase from Trichodermakoningii fermentation culture by aqueous two-phase partitioning. Enzym Microb Tech 28:196–201

    Article  CAS  Google Scholar 

  25. Balaji L, Jayaraman G (2014) Metal ion activated lipase from halo tolerant Bacillus sp. VITL8 displays broader operational range. Int J Biol Macromol 67:380–386

    Article  CAS  PubMed  Google Scholar 

  26. Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids—advantages beyond green technology. Curr Opin Biotechnol 14:432–437

    Article  CAS  PubMed  Google Scholar 

  27. Amid M, Manap MY (2014) Purification and characterization of a novel amylase enzyme from red pitaya (Hylocereus polyhizus) peel. Food Chem 165:412–418

    Article  CAS  PubMed  Google Scholar 

  28. Yong SY, Lim BH, Saleh S, Lai-Hock T (2016) Optimisation, purification and characterisation of extracellular lipase from Botryococcus sudeticus (UTEX 2629). J Mol Catal B: Enzym 126:99–105

    Article  CAS  Google Scholar 

  29. Saxena RK, Sheoran A, Giri B, Davidson WS (2003) Purification strategies for microbial lipases. J Microbiol Methods 52:1–18

    Article  CAS  PubMed  Google Scholar 

  30. Al-Zuhair S, Ramachandran KB, Hasan M (2004) Investigation of the specific interfacial area of a palm oil–water system. J Chem Technol Biotechnol 79:706–710

    Article  CAS  Google Scholar 

  31. Shamel MM, Ramachandran KB, Hasan M (2005) Operational stability of lipase enzyme: effect of temperature and shear. Dev Chem Eng Min Process 13:599–604

    Article  Google Scholar 

  32. Gonçalves KM, Sutili FK, Leite SGF, De Roma S, Leal ICR, (2012) Palm oil hydrolysis catalyzed by lipases under ultrasound irradiation: the use of experimental design as a tool for variable evaluation. Ultrason Sonochem 19:232–236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CAPES, FAPERGS, and CNPq are acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Treichel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preczeski, K.P., Kamanski, A.B., Scapini, T. et al. Efficient and low-cost alternative of lipase concentration aiming at the application in the treatment of waste cooking oils. Bioprocess Biosyst Eng 41, 851–857 (2018). https://doi.org/10.1007/s00449-018-1919-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1919-y

Keywords

Navigation