Skip to main content
Log in

A systematic approach for finding the objective function and active constraints for dynamic flux balance analysis

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Dynamic flux balance analysis (DFBA) has become an instrumental modeling tool for describing the dynamic behavior of bioprocesses. DFBA involves the maximization of a biologically meaningful objective subject to kinetic constraints on the rate of consumption/production of metabolites. In this paper, we propose a systematic data-based approach for finding both the biological objective function and a minimum set of active constraints necessary for matching the model predictions to the experimental data. The proposed algorithm accounts for the errors in the experiments and eliminates the need for ad hoc choices of objective function and constraints as done in previous studies. The method is illustrated for two cases: (1) for in silico (simulated) data generated by a mathematical model for Escherichia coli and (2) for actual experimental data collected from the batch fermentation of Bordetella Pertussis (whooping cough).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

S:

Stoichiometric matrix

\({{\varvec{v}}_{\varvec{k}}}\) :

Vector of fluxes

\(n\) :

Number of reactions

\(k\) :

Time instance

\(\psi\) :

Concentration

\(~{{\varvec{J}}_\mathbf{T}}\) :

Fluxes that satisfy tight constraints

\(~{{\varvec{J}}_\mathbf{R}}\) :

Fluxes that satisfy relaxed constraints

\({{\varvec{u}}_\mathbf{w}}\) :

Weight of sum of squared errors

I:

Identity matrix

\(w_{i}^{{{\text{sc}}}}\) :

Time-varying values of the weights for all the metabolites

\(w_{i}^{{\text{u}}}\) :

Weight of upper bound

\({{W}^{\text{u}}}\) :

Maximum allowable value for \(w_{i}^{{{\text{sc}}}}\)

\(w_{i}^{{\text{l}}}\) :

Weight of lower bound

\({N_{\text{C}}}\) :

Number of the objective functions’ candidates

\({{\varvec{n}}_\mathbf{g}}\) :

Estimated noise in the growth rate

\({N_{{\text{SC}}}}\) :

Total number of metabolites

\({N_{\text{m}}}\) :

Number of measured metabolites

\({V_{i,{\text{max}}}}\) :

Maximum rate

\({K_i}\) :

Half saturation concentration

\(\varepsilon\) :

Measurement error

\({X_k}\) :

The biomass value at time \(~k\)

\({w_{{{\text{c}}_i}}}\) :

The weight coefficients of the objective function candidates

References

  1. Schilling CH, Letscher D, Palsson BO (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J Theor Biol 203(3):229–248

    Article  CAS  Google Scholar 

  2. Jaqaman K, Danuser G (2006) Linking data to models: data regression. Nat Rev Mol Cell Biol 7(11):813–819

    Article  CAS  Google Scholar 

  3. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis?. Nat Biotechnol 28(3):245–248

    Article  CAS  Google Scholar 

  4. Foguet C et al (2016) HepatoDyn: a dynamic model of hepatocyte metabolism that integrates C-13 isotopomer data. PLoS Comput Biol 12(4):e1004899

  5. Llaneras F, Sala A, Picó J (2012) Dynamic estimations of metabolic fluxes with constraint-based models and possibility theory. J Process Control 22(10):1946–1955

    Article  CAS  Google Scholar 

  6. Varma A, Palsson BO (1995) Parametric sensitivity of stoichiometric flux balance models applied to wild-type Escherichia coli metabolism. Biotechnol Bioeng 45(1):69–79

    Article  CAS  Google Scholar 

  7. Mahadevan R, Edwards JS, Doyle FJ (2002) Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J 83(3):1331–1340

    Article  CAS  Google Scholar 

  8. Sanchez CEG, Saez RGT (2014) Comparison and analysis of objective functions in flux balance analysis. Biotechnol Prog 30(5):985–991

    Article  Google Scholar 

  9. Pramanik J, Keasling JD (1997) Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 56(4):398–421

    Article  CAS  Google Scholar 

  10. Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 3:119

    Article  Google Scholar 

  11. Knorr AL, Jain R, Srivastava R (2007) Bayesian-based selection of metabolic objective functions. Bioinformatics 23(3):351–357

    Article  CAS  Google Scholar 

  12. Burgard AP, Maranas CD (2003) Optimization-based framework for inferring and testing hypothesized metabolic objective functions. Biotechnol Bioeng 82(6):670–677

    Article  CAS  Google Scholar 

  13. Savinell JM, Palsson BO (1992) Network analysis of intermediary metabolism using linear optimization.1. Development of mathematical formalism. J Theor Biol 154(4):421–454

    Article  CAS  Google Scholar 

  14. Gianchandani EP et al (2008) Predicting biological system objectives de novo from internal state measurements. BMC Bioinform 9:43

  15. Llaneras F, Picó J (2008) Stoichiometric modelling of cell metabolism. J Biosci Bioeng 105(1):1–11

    Article  CAS  Google Scholar 

  16. Nikdel A, Budman H (2016) Identification of active constraints in dynamic flux balance analysis. Biotechnol Prog 33(1):26–36

  17. Maranas CD, Zomorrodi AR, Wiley Online Library (2016) Optimization methods in metabolic networks, Wiley, Hoboken (1 online resource)

    Book  Google Scholar 

  18. Borchers S et al (2013) Identification of growth phases and influencing factors in cultivations with AGE1.HN cells using set-based methods. PLoS One 8(8):e68124

  19. Shuler ML, Kargi F (1992) Bioprocess engineering: basic concepts. Prentice Hall international series in the physical and chemical engineering sciences, Prentice Hall, Englewood Cliffs, pp 16+479 s

    Google Scholar 

  20. Thalen M et al (2006) Fed-batch cultivation of Bordetella pertussis: metabolism and Pertussis Toxin production. Biologicals 34(4):289–297

    Article  CAS  Google Scholar 

  21. Budman H et al (2013) A dynamic metabolic flux balance based model of fed-batch fermentation of Bordetella pertussis. Biotechnol Prog 29(2):520–531

    Article  CAS  Google Scholar 

  22. Weiss JN (1997) The Hill equation revisited: uses and misuses. Faseb J 11(11):835–841

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Natural Science and Engineering Research Council (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector M. Budman.

Appendices

Appendix I

figure a
J1:

39.43 Ac + 35O2\(~ \to ~\) X

J2:

9.46Glc + 12.92O2\(~ \to ~\) X

J3:

9.84 Glc + 12.73O2\(~ \to ~\) 1.24Ac + X

J4:

19.23Glc \(~ \to ~\) 12.12Ac + X

Appendix II

J1:

Pyruvate \(~ \to ~\) PEP

J2:

Pyruvate + CoA \(\to ~\) Acetyl-coA + CO2

J3:

Acetyl-CoA + H2O + oxaloacetate \(\to\) citrate + CoA

J4:

Citrate \(\to \alpha\)-ketoglutarate + CO2

J5:

\(\alpha\)-ketoglutarate + enz-N6 \(~ \to\) succinyl transf. + CO2

J6:

Succinyl transf. + CoA \(\to ~\) succinyl-CoA + enz-N6

J7:

Succinyl-CoA + phosphate \(\to\) CoA + succinate

J8:

Succinate + acceptor \(\to\) fumarate + reduction acceptor

J9:

Fumarate + H2O \(~ \to\) malate

J10:

Malate \(~ \to\) oxaloacetate

J11:

Glutamate + NH3\(~ \to ~\) phosphate + glutamine

J12:

2 Glutamate \(~ \leftarrow ~\) glutamine + \(~\alpha\)-ketoglutarate

J13:

Glutamate + H2O \(~ \to \alpha\)-ketoglutarate + NH3

J14:

Proline + 2H2O \(~ \to\) glutamate

J15:

Oxaloacetate + glutamate \(\to ~\) aspartate + \(\alpha\)-ketoglutarate

J16:

Aspartate + NH3\(~ \leftarrow ~\) aspargine

J17:

PEP + \({\text{HCO}}_{3}^{ - }~ \to ~\) phosphate + oxaloacetate*

J18:

Lactate \(~ \to ~\) pyruvate

J19:

Acetate + CoA \(~ \leftarrow ~\) acetyl-CoA + phosphate

J20:

2 Acetyl-CoA \(~ \to ~\) CoA + acetoacetyl-CoA

J21:

Acetoacetyl-CoA \(~ \to ~\) PHB

J22:

Glucose-6-phosphate + 3 glyceraldehyde-3-phosphate \(~ \to ~\) 3 ribose-5-phosphate

J23:

Acetyl-CoA + carrier-protein \(\to ~\) acetoacetyl-carrier + CoA + CO2

J24:

Threonine + 3 pyruvate + 2 glutamate + acetyl-CoA + H2O \(\to ~\) NH3 + 3CO2 + 2H2O + isoleucine + \(~\alpha\)-ketoglutarate + valine + CoA + leucine

J25:

Serine + tetrahydrofolate \(\leftarrow \to\) 5,10-methylenetetrahydrofolate + glycine + H2O

J26:

Serine \(~ \leftarrow \to\) pyruvate + NH3

J27:

Threonine \(~ \leftarrow \to ~\) glycine + acetaldehyde

J28:

Aspartate \(\to\) threonine + phosphate

J29:

Hydrogen sulfide + acetyl-CoA + serine \(\to ~\) CoA + cysteine + acetate

J30:

Glutamate + pyruvate \(\leftarrow \alpha\)-ketoglutarate + alanine

J31:

Aspartate + pyruvate + glutamate + succynyl-CoA \(~ \to ~\) phosphate + \(~\alpha\)-ketogultarate + succinate + lysine + CO2 + CoA

J32:

Malate \(~ \to ~\) pyruvate + CO2

J33:

Amino acids \(~ \to ~\) biomass

J34:

Amino acids \(~ \to ~\) pertactin

J35:

PEP \(~ \to\) glyceraldehyde 3-P + phosphate

J36:

2GAP + H2O \(\to\) glucose 6-P + phosphate

J37:

J 3

J38:

Amino acids \(~ \to ~\) Pertussis toxin

J39:

Amino acids \(~ \to ~\) fimbria

J40:

Amino acids \(\to\) FHA

J41:

Inverse of J14

J42:

Inverse of J27†

J43:

Inverse of J30

J44:

2 Glutamate \(+{\text{~}}\) aspartate \(\to\) fumarate \(+{\text{~}}\alpha\)-ketoglutarate \(~+\) arginine

J45:

Glucose \(~+\) 6-P GAP \(+{\text{~}}\) 2 PEP \(~+{\text{~}}\) glutamate \(\to {\text{~}}\)tyrosine \(+\)d-xylose \(+{\text{~}}\) α-ketoglutarate

J46:

Inverse of J26

J47:

Valine \(+{\text{~}}\) α-ketoglutarate \(\to\) glutamate \(~+\) 4 methyl-2-oxopentanoate

J48:

2 pyruvate \(+\) serine \(+\) aspartate \(+\) cysteine \(\to\) CoA \(+\) 3 CO2\(+\) glycine

J49:

Inverse of J18

Stoichiometry of purines

Adenine: pyruvate \(~+{\text{~}}\) 2 glutamine \(+\) 2 aspartate \(+{\text{~}}\) glycine \(\to\) adenine \(+{\text{~}}\) 2 glutamate \(+{\text{~}}\) fumarate

Guanine: pyruvate \(+\) 3 glutamine \(+\) aspartate \(+\) glycine \(\to {\text{~}}\) guanine \(+\) 3 glutamate \(+\) fumarate

Stoichiometry of pyrimidines

UMP (Uridylic acid): glutamine \(+\)\({\text{HCO}}_{3}^{ - }+\) aspartate \(+\) ribose-5-phosphate \(\to\) UMP  \(+\)  CO2\(+\)  glutamate

CMP (Cytidylic acid): glutamine  \(+{\text{HCO}}_{3}^{ - }\) þ aspartate  \(+\)  ribose-5-phosphate  \(+\)  NH3\(\to\)  CMP  \(+\)  CO2\(+\) glutamate

TMP (Thymidylic acid): \({\text{HCO}}_{3}^{ - }\)\(+\) serine \(+\) glutamine \(+\) aspartate \(+\) ribose-5-phosphate \(\to\) glycine \(+\) TMP \(+\) glutamate \(+\) CO2

Metabolite

Value

Ala

− 1.028497997

Arg

− 0.023

Asp

− 0.209047

Asn

− 0.029

Gln

0.6234

Glu

− 3.623564

Gly

− 0.635784

His

− 0.173987138

Ileu

− 0.253078

Leu

− 0.26459

Lys

− 0.232495

Meth

− 0.45017

Phe

− 0.028945

Pro

− 1.532302

Ser

− 2.423

Thr

− 0.02846

Try

0

Tyr

− 0.00823

Val

− 0.92

Cys

0

Pyr

0

AcCoA

0

GAP

0

Lac

7.125

Ammonia

6.2675

Co2

5.243

Α-Ketoglutarate

0

Biomass

200

Pertactin

0.4171

Citrate

0.50043

Succ-transferase

0

Succ CoA

0

Succinate

0

Fumarate

0

Malate

0

Oxaloacetate

0.005

Ribose

8

G6P

0.4184

PEP

0

AcAcCoA

0

PHB

0

FFA

0.234

Pt toxin

0.33

Fimbria

0.31243

FHA

0.334125

Xylose

0

CoA

0

ATP

0

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikdel, A., Braatz, R.D. & Budman, H.M. A systematic approach for finding the objective function and active constraints for dynamic flux balance analysis. Bioprocess Biosyst Eng 41, 641–655 (2018). https://doi.org/10.1007/s00449-018-1899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1899-y

Keywords

Navigation